Suppr超能文献

利用整合的蛋白质-蛋白质相互作用和基因-基因共调控信息挖掘疾病基因。

Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

作者信息

Li Jin, Wang Limei, Guo Maozu, Zhang Ruijie, Dai Qiguo, Liu Xiaoyan, Wang Chunyu, Teng Zhixia, Xuan Ping, Zhang Mingming

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China ; School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China ; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China ; School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China.

出版信息

FEBS Open Bio. 2015 Mar 27;5:251-6. doi: 10.1016/j.fob.2015.03.011. eCollection 2015.

Abstract

In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

摘要

在人类中,尽管与疾病相关的基因发现迅速增加,但仍有很大一部分与疾病相关的基因未知。许多基于网络的方法已被用于对疾病基因进行优先级排序。已经使用了许多网络,如蛋白质-蛋白质相互作用(PPI)、KEGG和基因共表达网络。表达定量性状位点(eQTL)已成功应用于确定与多种疾病相关的基因。在本研究中,我们构建了一个基于eQTL的基因-基因共调控网络(GGCRN),并使用它来挖掘疾病基因。我们采用带重启的随机游走(RWR)算法来挖掘与阿尔茨海默病相关的基因。与单独的人类蛋白质参考数据库(HPRD)PPI网络相比,整合的HPRD PPI和GGCRN网络提供了更快的收敛速度,并揭示了新的疾病相关基因。因此,将RWR算法用于整合的PPI和GGCRN是一种挖掘疾病相关基因的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf8c/4392065/1a3c9fbb3af1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验