Suppr超能文献

通过基于蛋白质-蛋白质相互作用网络的 RWR 算法鉴定与增殖性糖尿病视网膜病变相关的基因。

Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network.

机构信息

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.

College of Information Engineering, Shanghai Maritime University, Shanghai, China.

出版信息

Biochim Biophys Acta Mol Basis Dis. 2018 Jun;1864(6 Pt B):2369-2375. doi: 10.1016/j.bbadis.2017.11.017. Epub 2017 Dec 10.

Abstract

Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis.

摘要

增生性糖尿病视网膜病变(PDR)是糖尿病最常见的并发症之一,可导致失明。蛋白质组学研究为 PDR 的发病机制提供了深入了解,并确定了一系列与 PDR 相关的基因,但远未完全表征,因为实验方法昂贵且耗时。在我们之前的研究中,我们通过最短路径算法成功鉴定了 35 个候选 PDR 相关基因。在当前的研究中,我们开发了一种使用随机游走重启(RWR)算法和蛋白质-蛋白质相互作用(PPI)网络的计算方法,以识别潜在的 PDR 相关基因。在 RWR 算法获得一些可能的基因后,应用了三阶段过滤策略,包括置换检验、相互作用检验和富集检验,以排除由于 PPI 网络结构、相互作用强度差以及基因本体(GO)术语和生物途径的相似性有限而导致的潜在假阳性。结果,该方法发现了 36 个候选基因,与我们之前研究报告的 35 个基因不同。文献综述表明,这 36 个基因中的 21 个得到了以前实验的支持。这些发现表明,我们使用不同计算方法的努力具有稳健性和互补性,从而为研究 PDR 发病机制提供了一种替代方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验