Yang Lei, Zhao Xudong, Tang Xianglong
1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China; ; 2. Information and Network Management Centre, Heilongjiang University, Harbin, China.
1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China;
Int J Biol Sci. 2014 Jun 11;10(7):677-88. doi: 10.7150/ijbs.8430. eCollection 2014.
Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.
网络生物学整合了不同类型的数据,包括物理或功能网络以及疾病基因集,以阐释人类疾病。蛋白质 - 蛋白质相互作用网络中的一个团(最大完全子图)是一个拓扑模块,具有内在的生物学意义。一个与疾病相关的团可能与复杂疾病相关联。全面识别团中的疾病成分有助于揭示疾病机制。本文提出了一种基于蛋白质 - 蛋白质相互作用网络中的团来预测疾病蛋白质的方法。为了容忍蛋白质网络中的假阳性和假阴性相互作用,将扩展团以及使用基因本体术语对预测的疾病蛋白质进行评分引入到基于团的方法中。预测的疾病蛋白质的精度通过疾病表型得到验证,并且稳定地保持在95%以上。与团相关联的预测疾病蛋白质可以部分补充基因型和表型之间的映射,并为理解严重疾病的发病机制提供线索。