Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
J Am Chem Soc. 2015 May 6;137(17):5810-8. doi: 10.1021/jacs.5b02651. Epub 2015 Apr 27.
Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.
理解晶体生长并改善材料质量对于提高用于电子、光电和光伏应用的半导体至关重要。在基于混合有机-无机卤化铅钙钛矿的太阳能电池兴趣日益浓厚和器件性能令人兴奋的进展中,对这些钙钛矿晶体生长的更好理解和更好控制可以进一步提高它们的光电和光伏性能。在这里,我们报告了钙钛矿材料,特别是晶体纳米结构的晶体生长的新见解。具体而言,通过在基底上涂覆的碘化铅(或醋酸铅)薄膜的溶液合成中,通过溶解-再结晶途径成功地生长了卤化甲基铵铅钙钛矿(CH3NH3PbI3 和 CH3NH3PbBr3)的单晶纳米线、纳米棒和纳米板。这些单晶纳米结构在室温下显示出强的光致发光和长载流子寿命。我们还报告说,固-液界面转化反应可以在具有微米晶粒尺寸和高表面覆盖率的高度结晶的纳米结构 MAPbI3 薄膜上进行,这使得光伏器件的功率转换效率达到 10.6%。这些结果表明,单晶钙钛矿纳米结构提供了改进的光物理性质,这对于基础研究和未来在纳米级光电和光子器件中的应用非常重要。