Zheng Xuntian, Kong Wenchi, Wen Jin, Hong Jiajia, Luo Haowen, Xia Rui, Huang Zilong, Luo Xin, Liu Zhou, Li Hongjiang, Sun Hongfei, Wang Yurui, Liu Chenshuaiyu, Wu Pu, Gao Han, Li Manya, Bui Anh Dinh, Mo Yi, Zhang Xueling, Yang Guangtao, Chen Yifeng, Feng Zhiqiang, Nguyen Hieu T, Lin Renxing, Li Ludong, Gao Jifan, Tan Hairen
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.
State Key Laboratory of PV Science and Technology, Trina Solar, ChangZhou, 210031, China.
Nat Commun. 2024 Jun 8;15(1):4907. doi: 10.1038/s41467-024-49351-5.
Perovskite/silicon tandem solar cells hold great promise for realizing high power conversion efficiency at low cost. However, achieving scalable fabrication of wide-bandgap perovskite (~1.68 eV) in air, without the protective environment of an inert atmosphere, remains challenging due to moisture-induced degradation of perovskite films. Herein, this study reveals that the extent of moisture interference is significantly influenced by the properties of solvent. We further demonstrate that n-Butanol (nBA), with its low polarity and moderate volatilization rate, not only mitigates the detrimental effects of moisture in air during scalable fabrication but also enhances the uniformity of perovskite films. This approach enables us to achieve an impressive efficiency of 29.4% (certified 28.7%) for double-sided textured perovskite/silicon tandem cells featuring large-size pyramids (2-3 μm) and 26.3% over an aperture area of 16 cm. This advance provides a route for large-scale production of perovskite/silicon tandem solar cells, marking a significant stride toward their commercial viability.
钙钛矿/硅串联太阳能电池在以低成本实现高功率转换效率方面具有巨大潜力。然而,由于钙钛矿薄膜会因水分导致降解,在没有惰性气氛保护环境的空气中实现宽带隙钙钛矿(约1.68 eV)的可扩展制造仍然具有挑战性。在此,本研究表明,水分干扰的程度受溶剂性质的显著影响。我们进一步证明,正丁醇(nBA)具有低极性和适中的挥发速率,不仅在可扩展制造过程中减轻了空气中水分的有害影响,还提高了钙钛矿薄膜的均匀性。这种方法使我们能够在具有大尺寸金字塔(2 - 3μm)的双面纹理钙钛矿/硅串联电池上实现29.4%(认证为28.7%)的令人印象深刻的效率,在16平方厘米的孔径面积上达到26.3%。这一进展为钙钛矿/硅串联太阳能电池的大规模生产提供了一条途径,标志着朝着其商业可行性迈出了重要一步。