Suppr超能文献

决定理发店旋转彩柱错觉的两种机制。

Two mechanisms that determine the Barber-Pole Illusion.

作者信息

Sun Peng, Chubb Charles, Sperling George

机构信息

Department of Cognitive Sciences, University of California Irvine, Irvine, CA 92617, United States; Department of Psychology, New York University, New York, NY 10003, United States.

Department of Cognitive Sciences, University of California Irvine, Irvine, CA 92617, United States.

出版信息

Vision Res. 2015 Jun;111(Pt A):43-54. doi: 10.1016/j.visres.2015.04.002. Epub 2015 Apr 11.

Abstract

UNLABELLED

In the Barber-Pole Illusion (BPI), a diagonally moving grating is perceived as moving vertically because of the narrow, vertical, rectangular shape of the aperture window through which it is viewed. This strong shape-motion interaction persists through a wide range of parametric variations in the shape of the window, the spatial and temporal frequencies of the moving grating, the contrast of the moving grating, complex variations in the composition of the grating and window shape, and the duration of viewing. It is widely believed that end-stop-feature (third-order) motion computations determine the BPI, and that Fourier motion-energy (first-order) computations determine failures of the BPI. Here we show that the BPI is more complex: (1) In a wide variety of conditions, weak-feature stimuli (extremely fast, low contrast gratings, 21.5 Hz, 4% contrast) that stimulate only the Fourier (first-order) motion system actually produce a slightly better BPI illusion than classical strong-feature gratings (2.75 Hz, 32% contrast). (2) Reverse-phi barber-pole stimuli are seen exclusively in the feature (third-order) BPI direction when presented at 2.75 Hz and exclusively in the opposite (Fourier, first-order) BPI direction at 21.5Hz, indicating that both the first- and the third-order systems can produce the BPI. (3) The BPI in barber poles with scalloped aperture boundaries is much weaker than in normal straight-edge barber poles for 2.75 Hz stimuli but not in 21.5 Hz stimuli.

CONCLUSIONS

Both first-order and third-order stimuli produce strong BPIs. In some stimuli, local Fourier motion-energy (first-order) produces the BPI via a subsequent motion-path-integration computation (Journal of Vision (2014) 14, 1--27); in other stimuli, the BPI is determined by various feature (third-order) motion inputs; in most stimuli, the BPI involves combinations of both. High temporal frequency, low-contrast stimuli favor the first-order motion-path-integration computation; low temporal frequency, high-contrast stimuli favor third-order motion computations.

摘要

未标注

在理发店旋转柱错觉(BPI)中,一个沿对角线移动的光栅由于观看它的孔径窗口呈狭窄的垂直矩形形状而被感知为垂直移动。这种强烈的形状 - 运动相互作用在窗口形状、移动光栅的空间和时间频率、移动光栅的对比度、光栅组成和窗口形状的复杂变化以及观看持续时间等广泛的参数变化中都持续存在。人们普遍认为,端点特征(三阶)运动计算决定了BPI,而傅里叶运动能量(一阶)计算决定了BPI的失效情况。在此我们表明BPI更为复杂:(1)在多种条件下,仅刺激傅里叶(一阶)运动系统的弱特征刺激(极快、低对比度光栅,21.5 Hz,4%对比度)实际上比经典的强特征光栅(2.75 Hz,32%对比度)产生的BPI错觉稍好。(2)反向 - 菲旋转柱刺激在2.75 Hz呈现时仅在特征(三阶)BPI方向上可见,而在21.5 Hz时仅在相反(傅里叶,一阶)BPI方向上可见,这表明一阶和三阶系统都能产生BPI。(3)对于2.75 Hz的刺激,具有扇形孔径边界的旋转柱中的BPI比正常直边旋转柱中的BPI弱得多,但对于21.5 Hz的刺激则不然。

结论

一阶和三阶刺激都能产生强烈的BPI。在某些刺激中,局部傅里叶运动能量(一阶)通过随后的运动路径整合计算产生BPI(《视觉杂志》(2014年)14卷,1 - 27页);在其他刺激中,BPI由各种特征(三阶)运动输入决定;在大多数刺激中,BPI涉及两者的组合。高时间频率、低对比度刺激有利于一阶运动路径整合计算;低时间频率、高对比度刺激有利于三阶运动计算。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验