Cunniffe Nik J, Stutt Richard O J H, DeSimone R Erik, Gottwald Tim R, Gilligan Christopher A
Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
United States Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida, United States of America.
PLoS Comput Biol. 2015 Apr 13;11(4):e1004211. doi: 10.1371/journal.pcbi.1004211. eCollection 2015 Apr.
Although local eradication is routinely attempted following introduction of disease into a new region, failure is commonplace. Epidemiological principles governing the design of successful control are not well-understood. We analyse factors underlying the effectiveness of reactive eradication of localised outbreaks of invading plant disease, using citrus canker in Florida as a case study, although our results are largely generic, and apply to other plant pathogens (as we show via our second case study, citrus greening). We demonstrate how to optimise control via removal of hosts surrounding detected infection (i.e. localised culling) using a spatially-explicit, stochastic epidemiological model. We show how to define optimal culling strategies that take account of stochasticity in disease spread, and how the effectiveness of disease control depends on epidemiological parameters determining pathogen infectivity, symptom emergence and spread, the initial level of infection, and the logistics and implementation of detection and control. We also consider how optimal culling strategies are conditioned on the levels of risk acceptance/aversion of decision makers, and show how to extend the analyses to account for potential larger-scale impacts of a small-scale outbreak. Control of local outbreaks by culling can be very effective, particularly when started quickly, but the optimum strategy and its performance are strongly dependent on epidemiological parameters (particularly those controlling dispersal and the extent of any cryptic infection, i.e. infectious hosts prior to symptoms), the logistics of detection and control, and the level of local and global risk that is deemed to be acceptable. A version of the model we developed to illustrate our methodology and results to an audience of stakeholders, including policy makers, regulators and growers, is available online as an interactive, user-friendly interface at http://www.webidemics.com/. This version of our model allows the complex epidemiological principles that underlie our results to be communicated to a non-specialist audience.
尽管在疾病传入新地区后通常会尝试进行局部根除,但失败却很常见。人们对成功控制疾病的设计所依据的流行病学原理了解并不充分。我们以佛罗里达州的柑橘溃疡病为例,分析了针对入侵性植物病害局部爆发进行反应性根除的有效性背后的因素,尽管我们的结果在很大程度上具有普遍性,适用于其他植物病原体(正如我们通过第二个案例研究柑橘黄龙病所展示的那样)。我们展示了如何使用空间明确的随机流行病学模型,通过清除检测到的感染周围的宿主(即局部扑杀)来优化控制。我们展示了如何定义考虑疾病传播随机性的最佳扑杀策略,以及疾病控制的有效性如何取决于决定病原体传染性、症状出现和传播的流行病学参数、初始感染水平以及检测和控制的后勤与实施情况。我们还考虑了最佳扑杀策略如何取决于决策者对风险的接受/厌恶程度,并展示了如何扩展分析以考虑小规模爆发可能产生的更大规模影响。通过扑杀控制局部爆发可能非常有效,尤其是在迅速启动时,但最佳策略及其效果强烈依赖于流行病学参数(特别是那些控制传播和任何隐性感染程度的参数,即症状出现前的感染宿主)、检测和控制的后勤情况以及被认为可接受的局部和全球风险水平。我们为向包括政策制定者、监管者和种植者在内的利益相关者群体阐释我们的方法和结果而开发的模型版本,可在网上通过一个交互式、用户友好的界面获取,网址为http://www.webidemics.com/。我们模型的这个版本使构成我们研究结果基础的复杂流行病学原理能够传达给非专业受众。