Suppr超能文献

贝叶斯推断在存在淘汰策略下植物病害时空随机传播:以描述黄萎病传播为例。

Bayesian inference for spatio-temporal stochastic transmission of plant disease in the presence of roguing: A case study to characterise the dispersal of Flavescence dorée.

机构信息

UMR SAVE, INRAE, Bordeaux Sciences Agro, Villenave d'Ornon, France.

Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom.

出版信息

PLoS Comput Biol. 2023 Sep 1;19(9):e1011399. doi: 10.1371/journal.pcbi.1011399. eCollection 2023 Sep.

Abstract

Estimating the distance at which pathogens disperse from one season to the next is crucial for designing efficient control strategies for invasive plant pathogens and a major milestone in the reduction of pesticide use in agriculture. However, we still lack such estimates for many diseases, especially for insect-vectored pathogens, such as Flavescence dorée (FD). FD is a quarantine disease threatening European vineyards. Its management is based on mandatory insecticide treatments and the removal of infected plants identified during annual surveys. This paper introduces a general statistical framework to model the epidemiological dynamics of FD in a mechanistic manner that can take into account missing hosts in surveyed fields (resulting from infected plant removals). We parameterized the model using Markov chain Monte Carlo (MCMC) and data augmentation from surveillance data gathered in Bordeaux vineyards. The data mainly consist of two snapshot maps of the infectious status of all the plants in three adjacent fields during two consecutive years. We demonstrate that heavy-tailed dispersal kernels best fit the spread of FD and that on average, 50% (resp. 80%) of new infection occurs within 10.5 m (resp. 22.2 m) of the source plant. These values are in agreement with estimates of the flying capacity of Scaphoideus titanus, the leafhopper vector of FD, reported in the literature using mark-capture techniques. Simulations of simple removal scenarios using the fitted model suggest that cryptic infection hampered FD management. Future efforts should explore whether strategies relying on reactive host removal can improve FD management.

摘要

估算病原体从上一季到下一季的扩散距离对于设计入侵植物病原体的有效控制策略至关重要,也是减少农业中农药使用的主要里程碑。然而,我们仍然缺乏许多疾病的此类估计,特别是对于昆虫传播的病原体,如黄萎病(FD)。FD 是一种威胁欧洲葡萄园的检疫性疾病。其管理基于强制性的杀虫剂处理和在年度调查中发现的受感染植物的清除。本文介绍了一种通用的统计框架,以机械方式模拟 FD 的流行病学动态,该框架可以考虑到调查田间(因受感染植物清除而导致)缺失的宿主。我们使用 Markov 链蒙特卡罗(MCMC)和从波尔多葡萄园收集的监测数据进行数据增强对模型进行了参数化。该数据主要由连续两年中三个相邻田间所有植物感染状态的两个快照地图组成。我们证明,重尾扩散核最适合 FD 的传播,并且平均有 50%(分别为 80%)的新感染发生在源植物的 10.5 米(分别为 22.2 米)内。这些值与使用标记捕获技术在文献中报道的 FD 的叶蝉媒介 Scaphoideus titanus 的飞行能力的估计值一致。使用拟合模型进行简单的清除方案模拟表明,隐匿感染阻碍了 FD 的管理。未来的工作应该探索是否依赖于反应性宿主清除的策略可以改善 FD 的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c0/10501664/0de836802403/pcbi.1011399.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验