Wu Minxian, Vanhoutte Gijs, Brooks Neil R, Binnemans Koen, Fransaer Jan
Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 - bus 2450, B-3001 Leuven, Belgium.
Phys Chem Chem Phys. 2015 May 14;17(18):12080-9. doi: 10.1039/c4cp06076h.
The electrodeposition of germanium at elevated temperatures up to 180 °C and pressures was studied from the ionic liquids 1-butyl-1-methylpyrrolidinium dicyanamide and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide containing [GeCl4(BuIm)2] (where BuIm = 1-butylimidazole) or GeCl4. Cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), rotating ring-disk electrode (RRDE), scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and Auger electron spectroscopy (AES) were used to investigate the electrochemical behavior and the properties of the electrodeposited germanium. Electrodeposition at elevated temperatures leads to higher deposition rates due to: (1) increase in the diffusion rate of the electroactive germanium compounds; (2) faster electrochemical kinetics in the electrolyte; and (3) higher electrical conductivity of the electrodeposited germanium film. Moreover, the morphology of the germanium film is also of a better quality at higher electrodeposition temperatures due to an increase in adatom mobility.
研究了在高达180°C的高温和压力下,从含有[GeCl4(BuIm)2](其中BuIm = 1-丁基咪唑)或GeCl4的离子液体1-丁基-1-甲基吡咯烷二氰胺和1-丁基-1-甲基吡咯烷双(三氟甲基磺酰)亚胺中电沉积锗的情况。采用循环伏安法(CV)、电化学石英晶体微天平(EQCM)、旋转环盘电极(RRDE)、扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)和俄歇电子能谱(AES)来研究电沉积锗的电化学行为和性质。在高温下进行电沉积可提高沉积速率,原因如下:(1)电活性锗化合物的扩散速率增加;(2)电解质中的电化学动力学更快;(3)电沉积锗膜的电导率更高。此外,由于吸附原子迁移率的增加,在较高的电沉积温度下,锗膜的形态质量也更好。