Suppr超能文献

无翅 I 与非肌肉型肌球蛋白 IIA 相互作用以促进细胞伸展形成,从而实现胶原蛋白重塑。

Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling.

作者信息

Arora Pamma D, Wang Yongqiang, Bresnick Anne, Janmey Paul A, McCulloch Christopher A

机构信息

Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada.

Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461.

出版信息

Mol Biol Cell. 2015 Jun 15;26(12):2279-97. doi: 10.1091/mbc.E14-11-1536. Epub 2015 Apr 15.

Abstract

We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1-6 capped actin filaments efficiently, whereas FliI GLD 2-6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1-6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2-6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2-6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1-6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts.

摘要

我们研究了肌动蛋白封端蛋白无翅I(FliI)在小鼠成纤维细胞胶原重塑中的作用。过表达FliI的细胞在胶原蛋白上的铺展减少,但形成了细长的突起,这些突起用肌球蛋白10和丝状肌动蛋白染色,并穿透胶原包被膜的孔隙。抑制Cdc42可阻止细胞突起的形成。在FliI敲低的细胞中,转染组成型活性Cdc42不能使突起形成。过表达FliI的细胞对外源胶原蛋白的摄取和降解增加,并且强烈压实胶原纤维,这被肌球蛋白II抑制剂blebbistatin所阻断。对FliI免疫沉淀物的质谱分析表明,FliI与非肌肉肌球蛋白IIA(NMMIIA)相关,这通过免疫沉淀得到证实。GFP-FliI与NMMIIA在细胞突起处共定位。含有凝溶胶蛋白样结构域(GLD)1-6的纯化FliI能有效地封端肌动蛋白丝,而FliI GLD 2-6则不能。结合试验表明,纯化的FliI蛋白(GLD 1-6)与NMMIIA的杆状结构域有很强的相互作用(解离常数kD = 0.146 μM),而FliI GLD 2-6显示出较低的结合亲和力(kD = 0.8584 μM)。与表达FliI GLD 1-6的细胞相比,表达FliI GLD 2-6的细胞表现出更少的细胞延伸,不与NMMIIA共定位,并且胶原摄取减少。我们得出结论,FliI与NMMIIA相互作用以促进细胞延伸的形成,从而使成纤维细胞中的胶原重塑成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f25/4462945/5bea98674464/2279fig1.jpg

相似文献

1
Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling.
Mol Biol Cell. 2015 Jun 15;26(12):2279-97. doi: 10.1091/mbc.E14-11-1536. Epub 2015 Apr 15.
2
TRPV4 mediates the Ca influx required for the interaction between flightless-1 and non-muscle myosin, and collagen remodeling.
J Cell Sci. 2017 Jul 1;130(13):2196-2208. doi: 10.1242/jcs.201665. Epub 2017 May 19.
3
Flightless anchors IQGAP1 and R-ras to mediate cell extension formation and matrix remodeling.
Mol Biol Cell. 2020 Jul 15;31(15):1595-1610. doi: 10.1091/mbc.E19-10-0554. Epub 2020 May 20.
5
The leucine-rich region of Flightless I interacts with R-ras to regulate cell extension formation.
Mol Biol Cell. 2018 Oct 1;29(20):2481-2493. doi: 10.1091/mbc.E18-03-0147. Epub 2018 Aug 9.
6
Flightless I is a focal adhesion-associated actin-capping protein that regulates cell migration.
FASEB J. 2012 Aug;26(8):3260-72. doi: 10.1096/fj.11-202051. Epub 2012 May 11.
7
Role of the small GTPase activating protein IQGAP1 in collagen phagocytosis.
J Cell Physiol. 2021 Feb;236(2):1270-1280. doi: 10.1002/jcp.29933. Epub 2020 Jul 9.
8
Gelsolin and non-muscle myosin IIA interact to mediate calcium-regulated collagen phagocytosis.
J Biol Chem. 2011 Sep 30;286(39):34184-98. doi: 10.1074/jbc.M111.247783. Epub 2011 Aug 2.
9
Fibroblast-specific upregulation of Flightless I impairs wound healing.
Exp Dermatol. 2015 Sep;24(9):692-7. doi: 10.1111/exd.12751. Epub 2015 Jul 14.
10
Flightless I regulates hemidesmosome formation and integrin-mediated cellular adhesion and migration during wound repair.
J Invest Dermatol. 2009 Aug;129(8):2031-45. doi: 10.1038/jid.2008.461. Epub 2009 Feb 12.

引用本文的文献

2
Wound Healing from an Actin Cytoskeletal Perspective.
Cold Spring Harb Perspect Biol. 2022 Aug 1;14(8):a041235. doi: 10.1101/cshperspect.a041235.
3
Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing.
Front Cell Dev Biol. 2020 Nov 24;8:603508. doi: 10.3389/fcell.2020.603508. eCollection 2020.
4
The Activities of the Gelsolin Homology Domains of Flightless-I in Actin Dynamics.
Front Mol Biosci. 2020 Sep 8;7:575077. doi: 10.3389/fmolb.2020.575077. eCollection 2020.
5
Flightless anchors IQGAP1 and R-ras to mediate cell extension formation and matrix remodeling.
Mol Biol Cell. 2020 Jul 15;31(15):1595-1610. doi: 10.1091/mbc.E19-10-0554. Epub 2020 May 20.
6
The scaffold-protein IQGAP1 enhances and spatially restricts the actin-nucleating activity of Diaphanous-related formin 1 (DIAPH1).
J Biol Chem. 2020 Mar 6;295(10):3134-3147. doi: 10.1074/jbc.RA119.010476. Epub 2020 Jan 31.
7
The leucine-rich region of Flightless I interacts with R-ras to regulate cell extension formation.
Mol Biol Cell. 2018 Oct 1;29(20):2481-2493. doi: 10.1091/mbc.E18-03-0147. Epub 2018 Aug 9.
8
Mammalian nonmuscle myosin II comes in three flavors.
Biochem Biophys Res Commun. 2018 Nov 25;506(2):394-402. doi: 10.1016/j.bbrc.2018.03.103. Epub 2018 Mar 17.
9
GEFs: Dual regulation of Rac1 signaling.
Small GTPases. 2017 Apr 3;8(2):90-99. doi: 10.1080/21541248.2016.1202635. Epub 2016 Jun 17.

本文引用的文献

1
Capping protein regulators fine-tune actin assembly dynamics.
Nat Rev Mol Cell Biol. 2014 Oct;15(10):677-89. doi: 10.1038/nrm3869. Epub 2014 Sep 10.
2
The different roles of myosin IIA and myosin IIB in contraction of 3D collagen matrices by human fibroblasts.
Exp Cell Res. 2014 Aug 15;326(2):295-306. doi: 10.1016/j.yexcr.2014.04.013. Epub 2014 Apr 25.
3
Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.
J Clin Invest. 2014 Mar;124(3):1069-82. doi: 10.1172/JCI67280.
4
Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions.
Eur J Cell Biol. 2013 Oct-Nov;92(10-11):339-48. doi: 10.1016/j.ejcb.2013.10.009. Epub 2013 Nov 4.
5
The expanding superfamily of gelsolin homology domain proteins.
Cytoskeleton (Hoboken). 2013 Nov;70(11):775-95. doi: 10.1002/cm.21149. Epub 2013 Nov 8.
6
Integrin-specific control of focal adhesion kinase and RhoA regulates membrane protrusion and invasion.
PLoS One. 2013 Sep 9;8(9):e74659. doi: 10.1371/journal.pone.0074659. eCollection 2013.
7
M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway.
J Cell Biol. 2013 Sep 16;202(6):951-66. doi: 10.1083/jcb.201301081. Epub 2013 Sep 9.
8
Signaling inputs to invadopodia and podosomes.
J Cell Sci. 2013 Jul 15;126(Pt 14):2979-89. doi: 10.1242/jcs.079475. Epub 2013 Jul 10.
9
Gelsolin: the tail of a molecular gymnast.
Cytoskeleton (Hoboken). 2013 Jul;70(7):360-84. doi: 10.1002/cm.21117. Epub 2013 Jun 27.
10
Integrin inactivators: balancing cellular functions in vitro and in vivo.
Nat Rev Mol Cell Biol. 2013 Jul;14(7):430-42. doi: 10.1038/nrm3599. Epub 2013 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验