Akhter Salina, Uddin Mohammad N, Jeong In S, Kim Dae W, Liu Xiao-Min, Bahk Jeong D
Division of Applied Life Sciences (BK21 Plus program), Graduate School of Gyeongsang National University, Jinju, Korea.
Plant Biotechnol J. 2016 Jan;14(1):215-30. doi: 10.1111/pbi.12376. Epub 2015 Apr 16.
Phosphoinositides (PIs) are essential metabolites which are generated by various lipid kinases and rapidly respond to a variety of environmental stimuli in eukaryotes. One of the precursors of important regulatory PIs, phosphatidylinositol (PtdIn) 4-phosphate, is synthesized by PtdIns 4-kinases (PI4K). Despite its wide distribution in eukaryotes, its role in plants remains largely unknown. Here, we show that the activity of AtPI4Kγ3 gene, an Arabidopsis (Arabidopsis thaliana) type II PtdIn 4-kinase, is regulated by DNA demethylation and some abiotic stresses. AtPI4Kγ3 is targeted to the nucleus and selectively bounds to a few PtdIns. It possessed autophosphorylation activity but unexpectedly had no detectable lipid kinase activity. Overexpression of AtPI4Kγ3 revealed enhanced tolerance to high salinity or ABA along with inducible expression of a host of stress-responsive genes and an optimal accumulation of reactive oxygen species. Furthermore, overexpressed AtPI4Kγ3 augmented the salt tolerance of bzip60 mutants. The ubiquitin-like domain of AtPI4Kγ3 is demonstrated to be essential for salt stress tolerance. Besides, AtPI4Kγ3-overexpressed plants showed a late-flowering phenotype, which was caused by the regulation of some flowering pathway integrators. In all, our results indicate that AtPI4Kγ3 is necessary for reinforcement of plant response to abiotic stresses and delay of the floral transition.
磷酸肌醇(PIs)是重要的代谢产物,由多种脂质激酶产生,并能快速响应真核生物中的各种环境刺激。重要的调节性磷酸肌醇之一,磷脂酰肌醇(PtdIn)4-磷酸,由磷脂酰肌醇4-激酶(PI4K)合成。尽管其在真核生物中广泛分布,但其在植物中的作用仍 largely 未知。在这里,我们表明拟南芥(Arabidopsis thaliana)II型磷脂酰肌醇4-激酶AtPI4Kγ3基因的活性受DNA去甲基化和一些非生物胁迫的调节。AtPI4Kγ3定位于细胞核,并选择性地与一些磷脂酰肌醇结合。它具有自磷酸化活性,但出乎意料的是没有可检测到的脂质激酶活性。AtPI4Kγ3的过表达显示出对高盐度或脱落酸的耐受性增强,同时一系列胁迫响应基因的诱导表达以及活性氧的最佳积累。此外,过表达的AtPI4Kγ3增强了bzip60突变体的耐盐性。AtPI4Kγ3的泛素样结构域被证明对盐胁迫耐受性至关重要。此外,AtPI4Kγ3过表达的植物表现出晚花表型,这是由一些开花途径整合因子的调节引起的。总之,我们的结果表明AtPI4Kγ3对于增强植物对非生物胁迫的响应和延迟花期转变是必要的。