Bendor Daniel
Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, United Kingdom.
PLoS Comput Biol. 2015 Apr 16;11(4):e1004197. doi: 10.1371/journal.pcbi.1004197. eCollection 2015 Apr.
In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex.
在听觉皮层中,声音中的时间信息由两种互补的神经编码来表示:一种基于刺激锁定放电的时间表征,以及一种速率表征,其中放电率与声学事件之间的时间同步变化,但缺乏刺激同步反应。使用计算神经元模型,我们发现当声音诱发的兴奋与强烈的延迟抑制相结合时,会产生刺激锁定反应。与此相反,当声音诱发的净兴奋较弱时,会产生非同步速率表征,这种情况发生在兴奋与抑制同时出现且相互平衡时。通过对清醒狨猴(Callithrix jacchus)的单神经元记录,我们验证了几个模型预测,包括具有速率和时间表征的神经元之间在时间保真度、放电率以及刺激诱发反应的时间动态方面的差异。这些数据共同表明,前馈抑制为听觉皮层中观察到的神经编码二分法提供了一个简洁的解释。