Suppr超能文献

MetCap:一种用于大规模靶向宏基因组学的生物信息学探针设计流程

MetCap: a bioinformatics probe design pipeline for large-scale targeted metagenomics.

作者信息

Kushwaha Sandeep K, Manoharan Lokeshwaran, Meerupati Tejashwari, Hedlund Katarina, Ahrén Dag

机构信息

Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.

Bioinformatics Infrastructure for Life Sciences (BILS), Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.

出版信息

BMC Bioinformatics. 2015 Feb 28;16(1):65. doi: 10.1186/s12859-015-0501-8.

Abstract

BACKGROUND

Massive sequencing of genes from different environments has evolved metagenomics as central to enhancing the understanding of the wide diversity of micro-organisms and their roles in driving ecological processes. Reduced cost and high throughput sequencing has made large-scale projects achievable to a wider group of researchers, though complete metagenome sequencing is still a daunting task in terms of sequencing as well as the downstream bioinformatics analyses. Alternative approaches such as targeted amplicon sequencing requires custom PCR primer generation, and is not scalable to thousands of genes or gene families.

RESULTS

In this study, we are presenting a web-based tool called MetCap that circumvents the limitations of amplicon sequencing of multiple genes by designing probes that are suitable for large-scale targeted metagenomics sequencing studies. MetCap provides a novel approach to target thousands of genes and genomic regions that could be used in targeted metagenomics studies. Automatic analysis of user-defined sequences is performed, and probes specifically designed for metagenome studies are generated. To illustrate the advantage of a targeted metagenome approach, we have generated more than 400,000 probes that match more than 300,000 [corrected] publicly available sequences related to carbon degradation, and used these probes for target sequencing in a soil metagenome study. The results show high enrichment of target genes and a successful capturing of the majority of gene families. MetCap is freely available to users from: http://soilecology.biol.lu.se/metcap/ .

CONCLUSION

MetCap is facilitating probe-based target enrichment as an easy and efficient alternative tool compared to complex primer-based enrichment for large-scale investigations of metagenomes. Our results have shown efficient large-scale target enrichment through MetCap-designed probes for a soil metagenome. The web service is suitable for any targeted metagenomics project that aims to study several genes simultaneously. The novel bioinformatics approach taken by the web service will enable researchers in microbial ecology to tap into the vast diversity of microbial communities using targeted metagenomics as a cost-effective alternative to whole metagenome sequencing.

摘要

背景

对来自不同环境的基因进行大规模测序推动了宏基因组学的发展,使其成为增进对微生物广泛多样性及其在驱动生态过程中所起作用理解的核心。成本的降低和高通量测序使更多研究人员能够开展大规模项目,不过就测序以及下游生物信息学分析而言,完整的宏基因组测序仍是一项艰巨任务。诸如靶向扩增子测序等替代方法需要定制PCR引物,并且无法扩展到数千个基因或基因家族。

结果

在本研究中,我们展示了一种名为MetCap的基于网络的工具,它通过设计适用于大规模靶向宏基因组测序研究的探针,规避了多个基因扩增子测序的局限性。MetCap提供了一种新方法来靶向数千个可用于靶向宏基因组学研究的基因和基因组区域。对用户定义的序列进行自动分析,并生成专门为宏基因组研究设计的探针。为了说明靶向宏基因组方法的优势,我们生成了40多万个与碳降解相关的、匹配30多万个[已修正]公开可用序列的探针,并将这些探针用于土壤宏基因组研究中的靶向测序。结果显示目标基因高度富集,并且成功捕获了大多数基因家族。用户可从以下网址免费获取MetCap:http://soilecology.biol.lu.se/metcap/

结论

与用于宏基因组大规模研究的基于复杂引物的富集方法相比,MetCap促进了基于探针的目标富集,是一种简便高效的替代工具。我们的结果表明,通过MetCap设计的探针可对土壤宏基因组进行高效的大规模目标富集。该网络服务适用于任何旨在同时研究多个基因的靶向宏基因组学项目。该网络服务所采用的新型生物信息学方法将使微生物生态学领域的研究人员能够利用靶向宏基因组学作为全宏基因组测序的经济有效替代方法,深入研究微生物群落的广泛多样性。

相似文献

1
MetCap: a bioinformatics probe design pipeline for large-scale targeted metagenomics.
BMC Bioinformatics. 2015 Feb 28;16(1):65. doi: 10.1186/s12859-015-0501-8.
3
Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.
J Microbiol Methods. 2018 Nov;154:14-18. doi: 10.1016/j.mimet.2018.09.020. Epub 2018 Oct 1.
4
MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool.
PLoS One. 2017 Mar 28;12(3):e0174609. doi: 10.1371/journal.pone.0174609. eCollection 2017.
5
Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities.
Environ Microbiol. 2012 Jan;14(1):13-22. doi: 10.1111/j.1462-2920.2011.02438.x. Epub 2011 Mar 1.
6
Revealing large metagenomic regions through long DNA fragment hybridization capture.
Microbiome. 2017 Mar 14;5(1):33. doi: 10.1186/s40168-017-0251-0.
7
Bioinformatics for NGS-based metagenomics and the application to biogas research.
J Biotechnol. 2017 Nov 10;261:10-23. doi: 10.1016/j.jbiotec.2017.08.012. Epub 2017 Aug 18.
8
[A review on the bioinformatics pipelines for metagenomic research].
Dongwuxue Yanjiu. 2012 Dec;33(6):574-85. doi: 10.3724/SP.J.1141.2012.06574.
9
MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function.
Methods Mol Biol. 2016;1399:207-33. doi: 10.1007/978-1-4939-3369-3_13.
10
Elviz - exploration of metagenome assemblies with an interactive visualization tool.
BMC Bioinformatics. 2015 Apr 28;16(1):130. doi: 10.1186/s12859-015-0566-4.

引用本文的文献

1
Timely diagnosis of atypical Japanese spotted fever: A case report.
Medicine (Baltimore). 2025 Sep 5;104(36):e44345. doi: 10.1097/MD.0000000000044345.
2
OLTA: Optimizing bait seLection for TArgeted sequencing.
Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf146.
4
cutanous infection misdiagnosed as sporotrichosis in a patient with systemic lupus erythematosus: A case report.
Heliyon. 2024 Jul 11;10(14):e34444. doi: 10.1016/j.heliyon.2024.e34444. eCollection 2024 Jul 30.
6
Syotti: scalable bait design for DNA enrichment.
Bioinformatics. 2022 Jun 24;38(Suppl 1):i177-i184. doi: 10.1093/bioinformatics/btac226.
7
A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project.
Front Genet. 2020 Feb 21;10:1407. doi: 10.3389/fgene.2019.01407. eCollection 2019.
9
Erratum to: MetCap: A bioinformatics probe design pipeline for large-scale targeted metagenomics.
BMC Bioinformatics. 2016 Jan 18;17:39. doi: 10.1186/s12859-015-0843-2.

本文引用的文献

2
How much metagenomic sequencing is enough to achieve a given goal?
Sci Rep. 2013;3:1968. doi: 10.1038/srep01968.
3
Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration.
DNA Res. 2013 Apr;20(2):185-96. doi: 10.1093/dnares/dst001. Epub 2013 Jan 30.
4
Unlocking the potential of metagenomics through replicated experimental design.
Nat Biotechnol. 2012 Jun 7;30(6):513-20. doi: 10.1038/nbt.2235.
5
MEROPS: the database of proteolytic enzymes, their substrates and inhibitors.
Nucleic Acids Res. 2012 Jan;40(Database issue):D343-50. doi: 10.1093/nar/gkr987. Epub 2011 Nov 15.
6
BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons.
BMC Genomics. 2011 Aug 8;12:402. doi: 10.1186/1471-2164-12-402.
7
Integrative analysis of environmental sequences using MEGAN4.
Genome Res. 2011 Sep;21(9):1552-60. doi: 10.1101/gr.120618.111. Epub 2011 Jun 20.
8
HiSpOD: probe design for functional DNA microarrays.
Bioinformatics. 2011 Mar 1;27(5):641-8. doi: 10.1093/bioinformatics/btq712. Epub 2011 Jan 6.
10
Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes.
Genome Res. 2010 Nov;20(11):1605-12. doi: 10.1101/gr.108332.110. Epub 2010 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验