‡Institut für Chemie und Biochemie der Freien Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
Inorg Chem. 2015 May 4;54(9):4231-42. doi: 10.1021/ic502855g. Epub 2015 Apr 16.
A novel linear hybrid tris-bidentate neutral ligand having 2,2'-bipyridine and two terminal triazolylpyridine coordination sites (L) was efficiently synthesized and explored in the synthesis of trinuclear triple-stranded homometallic side-by-side helicates L3Fe3(OTf)6 (1) and L3Zn3(OTf)6 (2), in which the three metal centers display alternating Λ and Δ configurations. Selective formation of the analogous heterometallic side-by-side helicate L3Fe2Zn(OTf)6 (3) was achieved from a mixture of L, Fe(CH3CN)2(OTf)2, and Zn(OTf)2 (1:1:1) in acetonitrile at room temperature. Various analytical techniques, i.e., single-crystal X-ray diffraction and NMR and UV/vis spectroscopy, were used to elucidate the sequence of the metal atoms within the heterometallic helicate, with the Zn(2+) at the central position. The formation of 3 was also achieved starting from either L3Zn3(OTf)6 or L3Fe3(OTf)6 by adding Fe(CH3CN)2(OTf)2 or Zn(OTf)2, respectively. ESI-MS and (1)H NMR studies elucidated different transmetalation mechanisms for the two cases: While a Zn(2+)-to-Fe(2+) transmetalation occurs by the stepwise exchange of single ions on the helicate L3Zn3(OTf)6 at room temperature, this mechanism is almost inoperative for the Fe(2+)-to-Zn(2+) transmetalation in L3Fe3(OTf)6, which is kinetically trapped at room temperature. In contrast, dissociation of L3Fe3(OTf)6 at higher temperature is required, followed by reassembly to give L3Fe2Zn(OTf)6. The reassembly follows an interesting mechanistic pathway when an excess of Zn(OTf)2 is present in solution: First, L3Zn3(OTf)6 forms as the high-temperature thermodynamic product, which is then slowly converted into the thermodynamic heterometallic L3Fe2Zn(OTf)6 product at room temperature. The temperature-dependent equilibrium shift is traced back to significant entropy differences resulting from an enhancement of the thermal motion of the ligands at high temperature, which destabilize the octahedral iron terminal complex and select zinc in a more stable tetrahedral geometry.
一种新型的线性混合三齿桥联中性配体,具有 2,2'-联吡啶和两个末端三唑基吡啶配位位点(L),可有效合成,并探索其在三核三联同金属并排螺旋体 L3Fe3(OTf)6(1)和 L3Zn3(OTf)6(2)的合成中的应用,其中三个金属中心呈现交替的 Λ 和 Δ 构型。通过在室温下在乙腈中混合 L、Fe(CH3CN)2(OTf)2 和 Zn(OTf)2(1:1:1),选择性地形成了类似的异金属并排螺旋体 L3Fe2Zn(OTf)6(3)。各种分析技术,如单晶 X 射线衍射、NMR 和 UV/vis 光谱,用于阐明杂金属螺旋体中金属原子的顺序,其中 Zn(2+)处于中心位置。通过添加 Fe(CH3CN)2(OTf)2 或 Zn(OTf)2,也可以从 L3Zn3(OTf)6 或 L3Fe3(OTf)6 开始合成 3。ESI-MS 和(1)H NMR 研究阐明了两种情况下不同的转金属化机制:虽然在室温下通过单个离子在螺旋体 L3Zn3(OTf)6 上的逐步交换发生 Zn(2+)-到-Fe(2+)转金属化,但这种机制对于 Fe(2+)-到-Zn(2+)转金属化几乎不起作用在 L3Fe3(OTf)6 中,其在室温下被动力学捕获。相比之下,需要在较高温度下解离 L3Fe3(OTf)6,然后重新组装得到 L3Fe2Zn(OTf)6。当溶液中存在过量的 Zn(OTf)2 时,重新组装遵循一条有趣的机制途径:首先,作为高温热力学产物形成 L3Zn3(OTf)6,然后在室温下缓慢转化为热力学异金属 L3Fe2Zn(OTf)6 产物。温度依赖性平衡位移可追溯到配体在高温下热运动增强导致的显著熵差异,这破坏了八面体铁端配合物的稳定性,并选择在更稳定的四面体几何形状中的锌。