†Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.
‡Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.
ACS Nano. 2015 May 26;9(5):5447-53. doi: 10.1021/acsnano.5b01296. Epub 2015 Apr 23.
Colloidal quantum dots (CQD) are an attractive thin-film material for photovoltaic applications due to low material costs, ease of fabrication, and size-tunable band gap. Unfortunately, today they suffer from a compromise between light absorption and photocarrier extraction, a fact that currently prevents the complete harvest of incoming above-band-gap solar photons. We have investigated the use of structured substrates and/or electrodes to increase the effective light path through the active material and found that these designs require highly conformal application of the light-absorbing films to achieve the greatest enhancement. This conformality requirement derives from the need for maximal absorption enhancement combined with shortest-distance charge transport. Here we report on a means of processing highly conformal layer-by-layer deposited CQD absorber films onto microstructured, light-recycling electrodes. Specifically, we engineer surface hydrophilicity to achieve conformal deposition of upper layers atop underlying ones. We show that only with the application of conformal coating can we achieve optimal quantum efficiency and enhanced power conversion efficiency in structured-electrode CQD cells.
胶体量子点 (CQD) 是一种很有吸引力的薄膜材料,可用于光伏应用,因为其具有低成本、易于制造和可尺寸调谐的能带隙等优点。不幸的是,目前它们在光吸收和光生载流子提取之间存在折衷,这一事实目前阻止了对入射带隙以上的太阳光子的完全收集。我们已经研究了使用结构化衬底和/或电极来增加活性材料的有效光路,并发现这些设计需要高度一致的光吸收膜应用,以实现最大的增强。这种一致性要求源于最大化吸收增强和最短距离电荷传输的需要。在这里,我们报告了一种在微结构化、光回收电极上处理高度一致的层层沉积 CQD 吸收器薄膜的方法。具体来说,我们通过控制表面润湿性来实现底层之上的上层的一致沉积。我们表明,只有通过一致的涂层应用,我们才能在结构化电极 CQD 电池中实现最佳量子效率和增强的功率转换效率。