Suppr超能文献

胶体量子点光伏:前进之路。

Colloidal quantum dot photovoltaics: a path forward.

机构信息

Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.

出版信息

ACS Nano. 2011 Nov 22;5(11):8506-14. doi: 10.1021/nn203438u. Epub 2011 Oct 12.

Abstract

Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun's broad spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field.

摘要

胶体量子点 (CQD) 为基于低成本材料和工艺的高效光伏提供了一条途径。通过量子尺寸效应实现的光谱可调性,有助于吸收来自太阳广谱的特定波长。CQD 材料易于加工,因为它们可以在溶液中进行合成、储存和处理。快速的进展使胶体量子点光伏太阳能的功率转换效率在最新报告中达到了 6%。这些成就代表了朝着具有商业吸引力的性能迈出的重要的第一步。在这里,我们回顾了器件结构和材料科学方面的进展。我们诊断了限制器件中电流和电压的主要现象——量子点薄膜带隙内的电子态——为了使 CQD PV 器件实现其潜力,必须解决这个问题。最后,我们提出了一个建议,即量子点薄膜带隙内电子态的密度和能量的限制,这应该可以提高器件的效率,达到太阳能领域未来所需的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验