University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Groningen, The Netherlands.
Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, the Netherlands.
J Affect Disord. 2015 Jul 15;180:36-43. doi: 10.1016/j.jad.2015.03.043. Epub 2015 Apr 3.
Atypical response behavior on depression questionnaires may invalidate depression severity measurements. This study aimed to identify and investigate atypical profiles of depressive symptoms using a data-driven approach based on the item response theory (IRT).
A large cohort of participants completed the Inventory of Depressive Symptomatology self-report (IDS-SR) at baseline (n=2329) and two-year follow-up (n=1971). Person-fit statistics were used to quantify how strongly each patient׳s observed symptom profile deviated from the expected profile given the group-based IRT model. Identified atypical profiles were investigated in terms of reported symptoms, external correlates and temporal consistency.
Compared to others, atypical responders (6.8%) showed different symptom profiles, with higher 'mood reactivity' and 'suicidal ideation' and lower levels of mild symptoms like 'sad mood'. Atypical responding was associated with more medication use (especially tricyclic antidepressants: OR=1.5), less somatization (OR=0.8), anxiety severity (OR=0.8) and anxiety diagnoses (OR=0.8-0.9), and was shown relatively stable (29.0%) over time.
This is a methodological proof-of-principal based on the IDS-SR in outpatients. Implementation studies are needed.
Person-fit statistics can be used to identify patients who report atypical patterns of depressive symptoms. In research and clinical practice, the extra diagnostic information provided by person-fit statistics could help determine if respondents׳ depression severity scores are interpretable or should be augmented with additional information.
抑郁问卷中的非典型反应行为可能会使抑郁严重程度的测量结果无效。本研究旨在使用基于项目反应理论(IRT)的数据驱动方法来识别和研究抑郁症状的非典型模式。
一个大样本的参与者在基线(n=2329)和两年随访(n=1971)时完成了抑郁症状自评量表(IDS-SR)。使用个体拟合统计来量化每个患者的观察到的症状谱与基于群体 IRT 模型的预期谱的偏离程度。根据报告的症状、外部相关性和时间一致性来研究所识别的非典型模式。
与其他人相比,非典型应答者(6.8%)表现出不同的症状模式,表现出更高的“情绪反应”和“自杀意念”,而轻度症状如“悲伤情绪”水平较低。非典型反应与更多的药物使用(尤其是三环类抗抑郁药:OR=1.5)、更少的躯体化(OR=0.8)、焦虑严重程度(OR=0.8)和焦虑诊断(OR=0.8-0.9)相关,并且在时间上相对稳定(29.0%)。
这是一项基于门诊患者 IDS-SR 的方法学原理验证研究。需要实施研究。
个体拟合统计可用于识别报告非典型抑郁症状模式的患者。在研究和临床实践中,个体拟合统计提供的额外诊断信息可以帮助确定受访者的抑郁严重程度评分是否可解释,或者是否需要用额外的信息来补充。