Suppr超能文献

卵巢年龄(OvAge):一种结合临床、生化和三维超声参数来量化卵巢储备功能的新方法。

OvAge: a new methodology to quantify ovarian reserve combining clinical, biochemical and 3D-ultrasonographic parameters.

作者信息

Venturella Roberta, Lico Daniela, Sarica Alessia, Falbo Maria Pia, Gulletta Elio, Morelli Michele, Zupi Errico, Cevenini Gabriele, Cannataro Mario, Zullo Fulvio

机构信息

Unit of Obstetrics and Gynecology, Magna Graecia University of Catanzaro, Viale Europa - Localitá Germaneto, 88100, Catanzaro, Italy.

School of Informatics and Biomedical Engineering-Bioinformatics Laboratory, Magna Graecia University of Catanzaro, Viale Europa - Localitá Germaneto, 88100, Catanzaro, Italy.

出版信息

J Ovarian Res. 2015 Apr 8;8:21. doi: 10.1186/s13048-015-0149-z.

Abstract

BACKGROUND

In the last decade, both endocrine and ultrasound data have been tested to verify their usefulness for assessing ovarian reserve, but the ideal marker does not yet exist. The purpose of this study was to find, if any, a statistical advanced model able to identify a simple, easy to understand and intuitive modality for defining ovarian age by combining clinical, biochemical and 3D-ultrasonographic data.

METHODS

This is a population-based observational study. From January 2012 to March 2014, we enrolled 652 healthy fertile women, 29 patients with clinical suspect of premature ovarian insufficiency (POI) and 29 patients with Polycystic Ovary syndrome (PCOS) at the Unit of Obstetrics & Gynecology of Magna Graecia University of Catanzaro (Italy). In all women we measured Anti Müllerian Hormone (AMH), Follicle Stimulating Hormone (FSH), Estradiol (E2), 3D Antral Follicle Count (AFC), ovarian volume, Vascular Index (VI) and Flow Index (FI) between days 1 and 4 of menstrual cycle. We applied the Generalized Linear Models (GzLM) for producing an equation combining these data to provide a ready to use information about women ovarian reserve, here called OvAge. To introduce this new variable, expression of ovarian reserve, we assumed that in healthy fertile women ovarian age is identical to chronological age.

RESULTS

GzLM applied on the healthy fertile controls dataset produced the following equation OvAge = 48.05 - 3.14AHM + 0.07FSH - 0.77AFC - 0.11FI + 0.25VI + 0.1AMHAFC + 0.02FSH*AFC. This model showed a high statistical significance for each marker included in the equation. We applied the final equation on POI and PCOS datasets to test its ability of discovering significant deviation from normality and we obtained a mean of predicted ovarian age significantly different from the mean of chronological age in both groups.

CONCLUSIONS

OvAge is one of the first reliable attempt to create a new method able to identify a simple, easy to understand and intuitive modality for defining ovarian reserve by combining clinical, biochemical and 3D-ultrasonographic data. Although design data prove a statistical high accuracy of the model, we are going to plan a clinical validation of model reliability in predicting reproductive prognosis and distance to menopause.

摘要

背景

在过去十年中,内分泌和超声数据都已被测试以验证其在评估卵巢储备方面的效用,但理想的标志物尚未存在。本研究的目的是找到一种统计先进模型(若存在的话),该模型能够通过结合临床、生化和三维超声数据,确定一种简单、易于理解且直观的方式来定义卵巢年龄。

方法

这是一项基于人群的观察性研究。2012年1月至2014年3月,我们在意大利卡坦扎罗大希腊大学妇产科纳入了652名健康可育女性、29名临床怀疑卵巢早衰(POI)的患者以及29名多囊卵巢综合征(PCOS)患者。在所有女性的月经周期第1天至第4天期间,我们测量了抗苗勒管激素(AMH)、促卵泡生成素(FSH)、雌二醇(E2)、三维窦卵泡计数(AFC)、卵巢体积、血管指数(VI)和血流指数(FI)。我们应用广义线性模型(GzLM)来生成一个结合这些数据的方程,以提供关于女性卵巢储备的现成可用信息,在此称为卵巢年龄(OvAge)。为引入这个新的变量,即卵巢储备的表达,我们假设在健康可育女性中卵巢年龄与实际年龄相同。

结果

应用于健康可育对照数据集的GzLM产生了以下方程:OvAge = 48.05 - 3.14AHM + 0.07FSH - 0.77AFC - 0.11FI + 0.25VI + 0.1AMHAFC + 0.02FSH*AFC。该模型对纳入方程的每个标志物都显示出高度统计学意义。我们将最终方程应用于POI和PCOS数据集,以测试其发现与正常情况显著偏差的能力,并且我们在两组中均获得了预测卵巢年龄的均值与实际年龄的均值显著不同的结果。

结论

卵巢年龄(OvAge)是首次尝试创建一种新方法的可靠尝试之一,该方法能够通过结合临床、生化和三维超声数据,确定一种简单、易于理解且直观的方式来定义卵巢储备。尽管设计数据证明了该模型具有较高的统计准确性,但我们仍计划对模型在预测生殖预后和绝经时间方面的可靠性进行临床验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验