Suppr超能文献

一种92探针特征在乳腺癌中的预后价值。

Prognostic value of a 92-probe signature in breast cancer.

作者信息

Akter Salima, Choi Tae Gyu, Nguyen Minh Nam, Matondo Abel, Kim Jin-Hwan, Jo Yong Hwa, Jo Ara, Shahid Muhammad, Jun Dae Young, Yoo Ji Youn, Nguyen Ngoc Ngo Yen, Seo Seong-Wook, Ali Liaquat, Lee Ju-Seog, Yoon Kyung-Sik, Choe Wonchae, Kang Insug, Ha Joohun, Kim Jayoung, Kim Sung Soo

机构信息

Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.

Department of Biochemistry and Cell Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh.

出版信息

Oncotarget. 2015 Jun 20;6(17):15662-80. doi: 10.18632/oncotarget.3525.

Abstract

Clinical applications of gene expression signatures in breast cancer prognosis still remain limited due to poor predictive strength of single training datasets and appropriate invariable platforms. We proposed a gene expression signature by reducing baseline differences and analyzing common probes among three recent Affymetrix U133 plus 2 microarray data sets. Using a newly developed supervised method, a 92-probe signature found in this study was associated with overall survival. It was robustly validated in four independent data sets and then repeated on three subgroups by incorporating 17 breast cancer microarray datasets. The signature was an independent predictor of patients' survival in univariate analysis [(HR) 1.927, 95% CI (1.237-3.002); p < 0.01] as well as multivariate analysis after adjustment of clinical variables [(HR) 7.125, 95% CI (2.462-20.618); p < 0.001]. Consistent predictive performance was found in different multivariate models in increased patient population (p = 0.002). The survival signature predicted a late metastatic feature through 5-year disease free survival (p = 0.006). We identified subtypes within the lymph node positive (p < 0.001) and ER positive (p = 0.01) patients that best reflected the invasive breast cancer biology. In conclusion using the Common Probe Approach, we present a novel prognostic signature as a predictor in breast cancer late recurrences.

摘要

由于单个训练数据集的预测能力较差以及缺乏合适的不变平台,基因表达特征在乳腺癌预后的临床应用仍然有限。我们通过减少基线差异并分析最近三个Affymetrix U133 plus 2微阵列数据集之间的共同探针,提出了一种基因表达特征。使用新开发的监督方法,本研究中发现的一个92探针特征与总生存期相关。它在四个独立数据集中得到了有力验证,然后通过纳入17个乳腺癌微阵列数据集在三个亚组中重复验证。该特征在单变量分析中是患者生存的独立预测因子[(风险比)1.927,95%置信区间(1.237 - 3.002);p < 0.01],在调整临床变量后的多变量分析中也是如此[(风险比)7.125,95%置信区间(2.462 - 20.618);p < 0.001]。在增加的患者群体中,不同多变量模型中发现了一致的预测性能(p = 0.002)。生存特征通过5年无病生存期预测了晚期转移特征(p = 0.006)。我们在淋巴结阳性(p < 0.001)和雌激素受体阳性(p = 0.01)患者中确定了最能反映浸润性乳腺癌生物学特性的亚型。总之,使用共同探针方法,我们提出了一种新的预后特征作为乳腺癌晚期复发的预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c21d/4558178/d303d24617bd/oncotarget-06-15662-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验