Suppr超能文献

脑磁图中的复杂性测量:测量精神分裂症中的“紊乱”

Complexity measures in magnetoencephalography: measuring "disorder" in schizophrenia.

作者信息

Brookes Matthew J, Hall Emma L, Robson Siân E, Price Darren, Palaniyappan Lena, Liddle Elizabeth B, Liddle Peter F, Robinson Stephen E, Morris Peter G

机构信息

Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.

Institute of Mental Health, University of Nottingham Innovation Park, Jubilee Campus, Triumph Road, Nottingham, United Kingdom.

出版信息

PLoS One. 2015 Apr 17;10(4):e0120991. doi: 10.1371/journal.pone.0120991. eCollection 2015.

Abstract

This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of 'disorder' in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal. We explore the relationship between entropy and the more established time-frequency decomposition methods, which elucidate the temporal evolution of neural oscillations. We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary. Finally, we provide a demonstration of the clinical utility of our method, using it to shed light on aberrant neurophysiological processing in schizophrenia. We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network. These findings demonstrate potential clinical utility for our method and support a recent hypothesis that schizophrenia can be characterised by abnormalities in the salience network (a well characterised distributed network comprising bilateral insula and cingulate cortices).

摘要

本文详细介绍了一种方法,该方法应用于脑磁图(MEG)数据时,能够测量人类大脑中“紊乱”的时空动态。我们基于信号熵的方法表明,空间上分离的脑区(或网络)产生时间上独立的熵时间进程。这些时间进程受认知任务调制,神经信号中熵的局部化和短暂增加表征了局部神经处理的增加。我们探讨了熵与更成熟的时频分解方法之间的关系,时频分解方法阐明了神经振荡的时间演变。我们观察到熵与振荡幅度之间存在直接但复杂的关系,这表明这些指标是互补的。最后,我们展示了我们方法的临床效用,用它来揭示精神分裂症中异常的神经生理过程。我们证明,与对照组相比,患者多个脑区(包括扣带回-脑岛网络、双侧脑岛皮质和右侧额顶网络)的任务诱发熵变化显著增加。这些发现证明了我们方法的潜在临床效用,并支持了最近的一个假设,即精神分裂症可以以突显网络(一个由双侧脑岛和扣带回皮质组成的特征明确的分布式网络)异常为特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f2d/4401778/69c229b587bf/pone.0120991.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验