Grant Audrey V, Roussilhon Christian, Paul Richard, Sakuntabhai Anavaj
Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France.
Centre National de la Recherche Scientifique, URA3012, Paris, France.
BMC Immunol. 2015 Mar 26;16:14. doi: 10.1186/s12865-015-0078-z.
Malaria remains a major worldwide public health problem with ~207 million cases and ~627,000 deaths per year, mainly affecting children under five years of age in Africa. Recent efforts at elaborating a genetic architecture of malaria have focused on severe malaria, leading to the identification of two new genes and confirmation of previously known variants in HBB, ABO and G6PD, by exploring the whole human genome in genome-wide association (GWA) studies. Molecular pathways controlling phenotypes representing effectiveness of host immunity, notably parasitemia and IgG levels, are of particular interest given the current lack of an efficacious vaccine and the need for new treatment options.
We propose a global causal framework of malaria phenotypes implicating progression from the initial infection with Plasmodium spp. to the development of the infection through liver and blood-stage multiplication cycles (parasitemia as a quantitative trait), to clinical malaria attack, and finally to severe malaria. Genetic polymorphism may control any of these stages, such that preceding stages act as mediators of subsequent stages. A biomarker of humoral immunity, IgG levels, can also be integrated into the framework, potentially mediating the impact of polymorphism by limiting parasitemia levels. Current knowledge of the genetic basis of parasitemia levels and IgG levels is reviewed through key examples including the hemoglobinopathies, showing that the protective effect of HBB variants on malaria clinical phenotypes may partially be mediated through parasitemia and cytophilic IgG levels. Another example is the IgG receptor FcγRIIa, encoded by FCGR2A, such that H131 homozygotes displayed higher IgG2 levels and were protective against high parasitemia and onset of malaria symptoms as shown in a causal diagram.
We thus underline the value of parasitemia and IgG levels as phenotypes in the understanding of the human genetic architecture of malaria, and the need for applying GWA approaches to these phenotypes.
疟疾仍然是一个重大的全球公共卫生问题,每年约有2.07亿病例和约62.7万人死亡,主要影响非洲五岁以下儿童。最近在阐述疟疾遗传结构方面的努力主要集中在重症疟疾上,通过全基因组关联(GWA)研究探索整个人类基因组,从而鉴定出两个新基因,并确认了先前已知的HBB、ABO和G6PD变体。鉴于目前缺乏有效的疫苗以及需要新的治疗选择,控制代表宿主免疫有效性的表型(尤其是寄生虫血症和IgG水平)的分子途径特别受关注。
我们提出了一个疟疾表型的全球因果框架,涉及从最初感染疟原虫到通过肝脏和血液阶段繁殖周期(将寄生虫血症作为一个数量性状)发展感染,再到临床疟疾发作,最后到重症疟疾。基因多态性可能控制这些阶段中的任何一个,使得前续阶段充当后续阶段的介导因素。体液免疫的一个生物标志物IgG水平也可以整合到该框架中,通过限制寄生虫血症水平潜在地介导多态性的影响。通过包括血红蛋白病在内的关键实例回顾了目前关于寄生虫血症水平和IgG水平遗传基础的知识,表明HBB变体对疟疾临床表型的保护作用可能部分通过寄生虫血症和嗜细胞性IgG水平介导。另一个例子是由FCGR2A编码的IgG受体FcγRIIa,如因果图所示,H131纯合子显示出较高的IgG2水平,并且对高寄生虫血症和疟疾症状的发作具有保护作用。
因此,我们强调寄生虫血症和IgG水平作为表型在理解疟疾人类遗传结构中的价值,以及对这些表型应用GWA方法的必要性。