Fuqua Joshua L, Wanga Valentine, Palmer Kenneth E
Owensboro Cancer Research Program, 1020 Breckenridge St., Suite 201, Owensboro, KY, 42303, USA.
University of Louisville School of Medicine, James Graham Brown Cancer Center, 529 S Jackson Street, Louisville, KY, 40202, USA.
BMC Biotechnol. 2015 Feb 22;15(1):12. doi: 10.1186/s12896-015-0120-5.
Griffithsin is a broad spectrum antiviral lectin that inhibits viral entry and maturation processes through binding clusters of oligomannose glycans on viral envelope glycoproteins. An efficient, scaleable manufacturing process for griffithsin active pharmaceutical ingredient (API) is essential for particularly cost-sensitive products such as griffithsin -based topical microbicides for HIV-1 prevention in resource poor settings. Our previously published purification method used ceramic filtration followed by two chromatography steps, resulting in a protein recovery of 30%. Our objective was to develop a scalable purification method for griffithsin expressed in Nicotiana benthamiana plants that would increase yield, reduce production costs, and simplify manufacturing techniques. Considering the future need to transfer griffithsin manufacturing technology to resource poor areas, we chose to focus modifying the purification process, paying particular attention to introducing simple, low-cost, and scalable procedures such as use of temperature, pH, ion concentration, and filtration to enhance product recovery.
We achieved >99% pure griffithsin API by generating the initial green juice extract in pH 4 buffer, heating the extract to 55°C, incubating overnight with a bentonite MgCl2 mixture, and final purification with Capto™ multimodal chromatography. Griffithsin extracted with this protocol maintains activity comparable to griffithsin purified by the previously published method and we are able to recover a substantially higher yield: 88 ± 5% of griffithsin from the initial extract. The method was scaled to produce gram quantities of griffithsin with high yields, low endotoxin levels, and low purification costs maintained.
The methodology developed to purify griffithsin introduces and develops multiple tools for purification of recombinant proteins from plants at an industrial scale. These tools allow for robust cost-effective production and purification of griffithsin. The methodology can be readily scaled to the bench top or industry and process components can be used for purification of additional proteins based on biophysical characteristics.
格里菲斯素是一种广谱抗病毒凝集素,它通过与病毒包膜糖蛋白上的低聚甘露糖聚糖簇结合来抑制病毒的进入和成熟过程。对于资源匮乏地区基于格里菲斯素的HIV - 1预防局部杀菌剂等对成本特别敏感的产品而言,高效、可扩展的格里菲斯素活性药物成分(API)生产工艺至关重要。我们之前发表的纯化方法采用陶瓷过滤,随后进行两步色谱法,蛋白质回收率为30%。我们的目标是开发一种可扩展的纯化方法,用于从本氏烟草植物中表达的格里菲斯素,以提高产量、降低生产成本并简化制造技术。考虑到未来将格里菲斯素制造技术转移到资源匮乏地区的需求,我们选择专注于改进纯化工艺,特别关注引入简单、低成本且可扩展的程序,如利用温度、pH值、离子浓度和过滤来提高产品回收率。
我们通过在pH 4缓冲液中制备初始绿色汁液提取物,将提取物加热至55°C,与膨润土MgCl₂混合物孵育过夜,并最终用Capto™多模式色谱法进行纯化,获得了纯度>99%的格里菲斯素API。用该方案提取的格里菲斯素保持了与先前发表方法纯化的格里菲斯素相当的活性,并且我们能够获得显著更高的产量:从初始提取物中回收88±5%的格里菲斯素。该方法扩大规模以生产克级量的格里菲斯素,保持了高产率、低内毒素水平和低纯化成本。
所开发的纯化格里菲斯素的方法引入并开发了多种用于从植物中大规模纯化重组蛋白的工具。这些工具能够实现高效、经济的格里菲斯素生产和纯化。该方法可以很容易地扩大到实验室规模或工业规模,并且工艺组件可用于基于生物物理特性纯化其他蛋白质。