Kempowsky-Hamon Tatiana, Valle Carine, Lacroix-Triki Magali, Hedjazi Lyamine, Trouilh Lidwine, Lamarre Sophie, Labourdette Delphine, Roger Laurence, Mhamdi Loubna, Dalenc Florence, Filleron Thomas, Favre Gilles, François Jean-Marie, Le Lann Marie-Véronique, Anton-Leberre Véronique
CNRS, LAAS, F-31400, Toulouse, France.
Université de Toulouse; INSA, UPS, INP; LISBP, F-31077, Toulouse, France.
BMC Med Genomics. 2015 Feb 7;8:3. doi: 10.1186/s12920-015-0077-1.
Personalized medicine has become a priority in breast cancer patient management. In addition to the routinely used clinicopathological characteristics, clinicians will have to face an increasing amount of data derived from tumor molecular profiling. The aims of this study were to develop a new gene selection method based on a fuzzy logic selection and classification algorithm, and to validate the gene signatures obtained on breast cancer patient cohorts.
We analyzed data from four published gene expression datasets for breast carcinomas. We identified the best discriminating genes by comparing molecular expression profiles between histologic grade 1 and 3 tumors for each of the training datasets. The most pertinent probes were selected and used to define fuzzy molecular grade 1-like (good prognosis) and fuzzy molecular grade 3-like (poor prognosis) profiles. To evaluate the prognostic performance of the fuzzy grade signatures in breast cancer tumors, a Kaplan-Meier analysis was conducted to compare the relapse-free survival deduced from histologic grade and fuzzy molecular grade classification.
We applied the fuzzy logic selection on breast cancer databases and obtained four new gene signatures. Analysis in the training public sets showed good performance of these gene signatures for grade (sensitivity from 90% to 95%, specificity 67% to 93%). To validate these gene signatures, we designed probes on custom microarrays and tested them on 150 invasive breast carcinomas. Good performance was obtained with an error rate of less than 10%. For one gene signature, among 74 histologic grade 3 and 18 grade 1 tumors, 88 cases (96%) were correctly assigned. Interestingly histologic grade 2 tumors (n = 58) were split in these two molecular grade categories.
We confirmed the use of fuzzy logic selection as a new tool to identify gene signatures with good reliability and increased classification power. This method based on artificial intelligence algorithms was successfully applied to breast cancers molecular grade classification allowing histologic grade 2 classification into grade 1 and grade 2 like to improve patients prognosis. It opens the way to further development for identification of new biomarker combinations in other applications such as prediction of treatment response.
个性化医疗已成为乳腺癌患者管理的重点。除了常规使用的临床病理特征外,临床医生还将面对越来越多来自肿瘤分子谱分析的数据。本研究的目的是开发一种基于模糊逻辑选择和分类算法的新基因选择方法,并验证在乳腺癌患者队列中获得的基因特征。
我们分析了四个已发表的乳腺癌基因表达数据集的数据。通过比较每个训练数据集组织学1级和3级肿瘤之间的分子表达谱,我们确定了最佳鉴别基因。选择最相关的探针并用于定义模糊分子1级样(预后良好)和模糊分子3级样(预后不良)谱。为了评估模糊分级特征在乳腺癌肿瘤中的预后性能,进行了Kaplan-Meier分析,以比较从组织学分级和模糊分子分级分类推导的无复发生存率。
我们将模糊逻辑选择应用于乳腺癌数据库,并获得了四个新的基因特征。在训练公共集中的分析显示这些基因特征在分级方面表现良好(敏感性从90%到95%,特异性从67%到93%)。为了验证这些基因特征,我们在定制微阵列上设计了探针,并在150例浸润性乳腺癌上进行了测试。获得了良好的性能,错误率小于10%。对于一个基因特征,在74例组织学3级和18例1级肿瘤中,88例(96%)被正确分类。有趣的是,组织学2级肿瘤(n = 58)被分为这两个分子分级类别。
我们证实了使用模糊逻辑选择作为一种新工具来识别具有良好可靠性和增强分类能力的基因特征。这种基于人工智能算法的方法成功应用于乳腺癌分子分级分类,允许将组织学2级分类为1级和2级样,以改善患者预后。它为在其他应用(如治疗反应预测)中识别新的生物标志物组合的进一步发展开辟了道路。