Van Doren J, Langguth B, Schecklmann M
University of Regensburg, Department of Psychiatry and Psychotherapy, Universitaetsstrasse 84, 93053 Regensburg, Germany.
University of Regensburg, Department of Psychiatry and Psychotherapy, Universitaetsstrasse 84, 93053 Regensburg, Germany.
Neurophysiol Clin. 2015 May;45(2):159-66. doi: 10.1016/j.neucli.2015.02.002. Epub 2015 Apr 16.
OBJECTIVES: Simultaneous use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows the measurement of TMS-induced cortical activity. A challenge in the interpretation of the cortical responses to TMS pulses is the differentiation between stimulation artifacts and cortical signals. Thus, we investigated TMS-evoked potentials and artifacts with respect to different TMS devices. METHODS: Physical properties of the magnetic field produced by a MagStim(®), Magventure(®) and Deymed(®) stimulator were determined. Six subjects were stimulated over the left motor cortex hot spot of the right index finger 42 times with 120% motor threshold, while wearing a 60-electrode EEG cap. RESULTS: For each device we found a linear increase of field strength with a linear increase of machine output. The Magventure(®) system differed from the MagStim(®) and the Deymed(®) system with respect to field strength (higher), magnetic flux duration (shorter), motor threshold (lower), recovery time from the TMS artifact (shorter), motor evoked potentials (MEPs) latency (shorter), and had a reversed first artifact trajectory. There were no differences with respect to validity of the MEPs (number of valid epochs), MEP amplitudes, latency or amplitude of the second TMS artifact, or latency or amplitude of TMS-evoked potentials (TEPs). CONCLUSIONS: All of the used devices are well suited for TMS-EEG measurements, but the technical differences (e.g., pulse length) should be taken into account for the interpretation of the results of these experiments. Our results further confirm that adjustment of the stimulation intensity according to individual motor threshold seems to be an effective method to obtain comparable MEP and TEP amplitudes with different stimulation devices.
目的:同时使用经颅磁刺激(TMS)和脑电图(EEG)可测量TMS诱发的皮层活动。解释皮层对TMS脉冲的反应时面临的一个挑战是区分刺激伪迹和皮层信号。因此,我们针对不同的TMS设备研究了TMS诱发的电位和伪迹。 方法:测定了MagStim®、Magventure®和Deymed®刺激器产生的磁场的物理特性。六名受试者佩戴60电极EEG帽,以120%的运动阈值在右手食指的左运动皮层热点上接受42次刺激。 结果:对于每种设备,我们发现场强随机器输出的线性增加而线性增加。Magventure®系统在以下方面与MagStim®和Deymed®系统不同:场强(更高)、磁通量持续时间(更短)、运动阈值(更低)、从TMS伪迹恢复的时间(更短)、运动诱发电位(MEP)潜伏期(更短),并且有反向的第一个伪迹轨迹。在MEP的有效性(有效时相数量)、MEP振幅、第二个TMS伪迹的潜伏期或振幅,或TMS诱发电位(TEP)的潜伏期或振幅方面没有差异。 结论:所有使用的设备都非常适合TMS-EEG测量,但在解释这些实验结果时应考虑技术差异(例如脉冲长度)。我们的结果进一步证实,根据个体运动阈值调整刺激强度似乎是一种用不同刺激设备获得可比的MEP和TEP振幅的有效方法。
Brain Stimul. 2013-4-28
J Neurophysiol. 2012-3-28
Clin Neurophysiol. 2006-8
J Neurophysiol. 2012-10-24
Psychophysiology. 2024-1
Front Cell Neurosci. 2015-10-21