文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

与 TMS-EEG 同时发生的短潜伏期伪迹。

Short-latency artifacts associated with concurrent TMS-EEG.

机构信息

Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia.

出版信息

Brain Stimul. 2013 Nov;6(6):868-76. doi: 10.1016/j.brs.2013.04.004. Epub 2013 Apr 28.


DOI:10.1016/j.brs.2013.04.004
PMID:23651674
Abstract

BACKGROUND: Concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging method for studying cortical network properties. However, various artifacts affect measurement of TMS-evoked cortical potentials (TEPs), especially within 30 ms of stimulation. OBJECTIVE/HYPOTHESIS: The aim of this study was to assess the origin and recovery of short-latency TMS-EEG artifacts (<30 ms) using different stimulators and under different experimental conditions. METHODS: EEG was recorded during TMS delivered to a phantom head (melon) and 12 healthy volunteers with different TMS machines, at different scalp positions, at different TMS intensities, and following paired-pulse TMS. Recovery from the TMS artifact and other short-latency artifacts were compared between conditions. RESULTS: Following phantom stimulation, the artifact resulting from different TMS machines (Magstim 200, Magventure MagPro R30 and X100) and pulse shapes (monophasic and biphasic) resulted in different artifact profiles. After accounting for differences between machines, TMS artifacts recovered within ∼12 ms. This was replicated in human participants, however a large secondary artifact (peaks at 5 and 10 ms) became prominent following stimulation over lateral scalp positions, which only recovered after ∼25-40 ms. Increasing TMS intensity increased secondary artifact amplitude over both motor and prefrontal cortex. There was no consistent modulation of the secondary artifact following inhibitory paired-pulse TMS (interstimulus interval = 100 ms) over motor cortex. CONCLUSIONS: The secondary artifact observed in humans is consistent with activation of scalp muscles following TMS. TEPs can be recorded within a short period of time (10-12 ms) following TMS, however measures must be taken to avoid muscle stimulation.

摘要

背景:经颅磁刺激和脑电图(TMS-EEG)同步是一种新兴的研究皮质网络特性的方法。然而,各种伪影会影响 TMS 诱发皮质电位(TEP)的测量,尤其是在刺激后 30ms 内。

目的/假设:本研究旨在评估不同刺激器和不同实验条件下,短潜伏期 TMS-EEG 伪影(<30ms)的起源和恢复。

方法:在使用不同的 TMS 机器、在不同的头皮位置、在不同的 TMS 强度以及在进行成对脉冲 TMS 后,在一个幻影头部(瓜)和 12 名健康志愿者记录 EEG 期间,记录 TMS 诱发的脑电活动。比较不同条件下 TMS 伪影和其他短潜伏期伪影的恢复情况。

结果:在对幻影进行刺激后,来自不同 TMS 机器(Magstim 200、Magventure MagPro R30 和 X100)和脉冲形状(单相和双相)的伪影导致了不同的伪影模式。在考虑到机器之间的差异后,TMS 伪影在大约 12ms 内恢复。这在人类参与者中得到了复制,然而,在刺激外侧头皮位置后,一个大的二级伪影(在 5 和 10ms 处出现峰值)变得明显,只有在大约 25-40ms 后才能恢复。增加 TMS 强度会增加运动皮质和前额皮质上的二级伪影幅度。在运动皮质上,抑制性成对脉冲 TMS(刺激间隔=100ms)后,二级伪影没有一致的调制。

结论:在人类中观察到的二级伪影与 TMS 后头皮肌肉的激活一致。TEP 可以在 TMS 后短时间(10-12ms)内记录,但必须采取措施避免肌肉刺激。

相似文献

[1]
Short-latency artifacts associated with concurrent TMS-EEG.

Brain Stimul. 2013-4-28

[2]
TMS-related potentials and artifacts in combined TMS-EEG measurements: Comparison of three different TMS devices.

Neurophysiol Clin. 2015-5

[3]
Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties.

Neuroimage. 2014-7-25

[4]
TMS-EEG co-registration: on TMS-induced artifact.

Clin Neurophysiol. 2009-7

[5]
The effect of stimulus parameters on TMS-EEG muscle artifacts.

Brain Stimul. 2012-8-10

[6]
Reduction of TMS induced artifacts in EEG using principal component analysis.

IEEE Trans Neural Syst Rehabil Eng. 2013-1-23

[7]
Mapping cortical excitability in the human dorsolateral prefrontal cortex.

Clin Neurophysiol. 2024-8

[8]
The correspondence between EMG and EEG measures of changes in cortical excitability following transcranial magnetic stimulation.

J Physiol. 2021-6

[9]
Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex.

Neuroimage. 2007-8-1

[10]
EEG Artifact Removal in TMS Studies of Cortical Speech Areas.

Brain Topogr. 2020-1

引用本文的文献

[1]
Characterising the contribution of auditory and somatosensory inputs to TMS-evoked potentials following stimulation of prefrontal, premotor, and parietal cortex.

Imaging Neurosci (Camb). 2024-11-1

[2]
Commonality of neuronal coherence for motor skill acquisition and interlimb transfer.

Sci Rep. 2025-7-19

[3]
Reliability of transcranial magnetic stimulation evoked potentials to detect the effects of theta-burst stimulation of the prefrontal cortex.

Neuroimage Rep. 2022-6-21

[4]
Assessing Neuromodulation Effects of Theta Burst Stimulation to the Prefrontal Cortex Using Transcranial Magnetic Stimulation Electroencephalography (TMS-EEG).

Eur J Neurosci. 2025-5

[5]
The "Cocombola Study": A Physical Phantom Model for tDCS-Induced Electric Field Distribution.

Bioengineering (Basel). 2025-3-27

[6]
Protocol to assess changes in brain network resistance to perturbation during offline processing using TMS-EEG.

STAR Protoc. 2025-3-21

[7]
Identifying neural circuitry abnormalities in neuropathic pain with transcranial magnetic stimulation and electroencephalogram co-registration.

Neurotherapeutics. 2025-3

[8]
Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex.

Hum Brain Mapp. 2024-10-15

[9]
Neurophysiological markers of disease severity and cognitive dysfunction in major depressive disorder: A TMS-EEG study.

Int J Clin Health Psychol. 2024

[10]
Mapping cortical excitability in the human dorsolateral prefrontal cortex.

Clin Neurophysiol. 2024-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索