Suppr超能文献

用于磁共振成像(MRI)系统的具有改进的射频磁场近场均匀性的射频头线圈设计

RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

作者信息

Sohn Sung-Min, DelaBarre Lance, Gopinath Anand, Vaughan John Thomas

机构信息

Department of Electrical and Computer Engineering, University of Minnesota. He is now with Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA.

Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55454.

出版信息

IEEE Trans Microw Theory Tech. 2014 Aug;62(8):1784-1789. doi: 10.1109/tmtt.2014.2331621.

Abstract

Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B) over the subject and MR images may have spatially anomalous contrast. The B near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B near-field with the trapezoidal shape.

摘要

磁共振成像(MRI)系统中更高的磁场强度能在MR图像中提供更高的信噪比(SNR)、对比度和空间分辨率。然而,随着MRI系统静磁场(B)的增加,在超高场(7特斯拉及以上)中,拉莫尔频率下的波长变得比人体短。在短波长时,会出现干涉效应,导致射频磁场近场(B)在受试者身上不均匀,并且MR图像可能会出现空间异常对比度。由横向电磁(TEM)射频线圈的微带线元件产生的B近场在其长度中心附近最大,并向两端衰减。在本研究中,提出了一种双梯形微带传输线元件,通过逐渐改变阻抗来获得均匀的B场分布。构建了两个分别具有均匀形状元件和梯形形状元件的多通道射频头部线圈,并在7T MRI扫描仪上用体模进行测试以作比较。模拟和实验结果表明,梯形形状的B近场更强且更均匀。

相似文献

1
RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.
IEEE Trans Microw Theory Tech. 2014 Aug;62(8):1784-1789. doi: 10.1109/tmtt.2014.2331621.
2
Microstrip Transmission Line RF Coil for a PET/MRI Insert.
Magn Reson Med Sci. 2020 May 1;19(2):147-153. doi: 10.2463/mrms.mp.2019-0137. Epub 2019 Nov 27.
3
An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T.
Magn Reson Med Sci. 2017 Jul 10;16(3):253-258. doi: 10.2463/mrms.tn.2016-0149. Epub 2016 Sep 30.
5
Evaluation of Common RF Coil Setups for MR Imaging at Ultrahigh Magnetic Field: A Numerical Study.
Int Symp Appl Sci Biomed Commun Technol. 2011;2011. doi: 10.1145/2093698.2093768.
6
5T magnetic resonance imaging: radio frequency hardware and initial brain imaging.
Quant Imaging Med Surg. 2023 May 1;13(5):3222-3240. doi: 10.21037/qims-22-945. Epub 2023 Mar 29.
7
Development of a Helmet-Shape Dual-Channel RF coil for brain imaging at 54 mT using inverse boundary element method.
J Magn Reson. 2024 Mar;360:107636. doi: 10.1016/j.jmr.2024.107636. Epub 2024 Feb 14.
8
Microstrip RF surface coil design for extremely high-field MRI and spectroscopy.
Magn Reson Med. 2001 Sep;46(3):443-50. doi: 10.1002/mrm.1212.
9
An inverted-microstrip resonator for human head proton MR imaging at 7 tesla.
IEEE Trans Biomed Eng. 2005 Mar;52(3):495-504. doi: 10.1109/TBME.2004.842968.

引用本文的文献

1
A Review of Current Control and Decoupling Methods for MRI Transmit Arrays.
IEEE Rev Biomed Eng. 2025;18:388-400. doi: 10.1109/RBME.2024.3351713. Epub 2025 Jan 28.
2
Excitation and RF Field Control of a Human-Size 10.5-T MRI System.
IEEE Trans Microw Theory Tech. 2019 Mar;67(3):1184-1196. doi: 10.1109/TMTT.2018.2884405. Epub 2018 Dec 14.
3
Monopole antenna array design for 3 T and 7 T magnetic resonance imaging.
PLoS One. 2019 Apr 1;14(4):e0214637. doi: 10.1371/journal.pone.0214637. eCollection 2019.
4
Computational and experimental evaluation of the Tic-Tac-Toe RF coil for 7 Tesla MRI.
PLoS One. 2019 Jan 10;14(1):e0209663. doi: 10.1371/journal.pone.0209663. eCollection 2019.
5
A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI.
Magn Reson Med. 2017 Feb;77(2):884-894. doi: 10.1002/mrm.26153. Epub 2016 Feb 17.

本文引用的文献

1
The future of ultra-high field MRI and fMRI for study of the human brain.
Neuroimage. 2012 Aug 15;62(2):1241-8. doi: 10.1016/j.neuroimage.2011.10.065. Epub 2011 Oct 28.
2
9.4T human MRI: preliminary results.
Magn Reson Med. 2006 Dec;56(6):1274-82. doi: 10.1002/mrm.21073.
3
Electromagnetic perspective on the operation of RF coils at 1.5-11.7 Tesla.
Magn Reson Med. 2005 Sep;54(3):683-90. doi: 10.1002/mrm.20596.
4
Whole-body MRI at high field: technical limits and clinical potential.
Eur Radiol. 2005 May;15(5):946-59. doi: 10.1007/s00330-005-2678-0. Epub 2005 Jan 27.
5
Central brightening due to constructive interference with, without, and despite dielectric resonance.
J Magn Reson Imaging. 2005 Feb;21(2):192-6. doi: 10.1002/jmri.20245.
6
Efficient high-frequency body coil for high-field MRI.
Magn Reson Med. 2004 Oct;52(4):851-9. doi: 10.1002/mrm.20177.
7
High field MRI in preclinical research.
Eur J Radiol. 2003 Nov;48(2):165-70. doi: 10.1016/j.ejrad.2003.08.007.
8
Analysis of wave behavior in lossy dielectric samples at high field.
Magn Reson Med. 2002 May;47(5):982-9. doi: 10.1002/mrm.10137.
9
Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator.
Magn Reson Imaging. 2001 Dec;19(10):1339-47. doi: 10.1016/s0730-725x(01)00404-0.
10
7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images.
Magn Reson Med. 2001 Jul;46(1):24-30. doi: 10.1002/mrm.1156.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验