Vaughan Thomas, DelaBarre Lance, Snyder Carl, Tian Jinfeng, Akgun Can, Shrivastava Devashish, Liu Wanzahn, Olson Chris, Adriany Gregor, Strupp John, Andersen Peter, Gopinath Anand, van de Moortele Pierre-Francois, Garwood Michael, Ugurbil Kamil
Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Magn Reson Med. 2006 Dec;56(6):1274-82. doi: 10.1002/mrm.21073.
This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9.4T.
这项工作报告了在9.4T新的高场基准下首批人体图像的初步结果。使用了一个直径65厘米的磁体孔,以及一个不对称的直径40厘米的头部梯度和匀场装置。一个多通道传输线(横向电磁(TEM))头部线圈由一个可编程并行收发器驱动,以独立控制每个通道的相对相位和幅度。这些新的射频场控制方法有助于补偿由于相消干涉图案引起的射频伪影,从而获得均匀的9.4T头部图像或定位解剖目标。在获得美国食品药品监督管理局(FDA)的研究性器械豁免(IDE)和内部审查委员会(IRB)批准的人体研究之前,先在猪模型上进行了初步的射频安全性研究。这些数据与前44名人类志愿者的退出访谈结果一同报告。尽管讨论了几个有待改进的地方,但初步结果证明了在9.4T进行安全且成功的人体成像的可行性。