文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

5T磁共振成像:射频硬件与脑部初始成像

5T magnetic resonance imaging: radio frequency hardware and initial brain imaging.

作者信息

Wei Zidong, Chen Qiaoyan, Han Shihong, Zhang Shuheng, Zhang Na, Zhang Lei, Wang Haining, He Qiang, Cao Peng, Zhang Xiaoliang, Liang Dong, Liu Xin, Li Ye, Zheng Hairong

机构信息

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

The Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China.

出版信息

Quant Imaging Med Surg. 2023 May 1;13(5):3222-3240. doi: 10.21037/qims-22-945. Epub 2023 Mar 29.


DOI:10.21037/qims-22-945
PMID:37179946
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10167427/
Abstract

BACKGROUND: We aimed to demonstrate the feasibility of generating high-resolution human brain magnetic resonance imaging (MRI) at 5 Tesla (T) using a quadrature birdcage transmit/48-channel receiver coil assembly. METHODS: A quadrature birdcage transmit/48-channel receiver coil assembly was designed for human brain imaging at 5T. The radio frequency (RF) coil assembly was validated by electromagnetic (EM) simulations and phantom imaging experimental studies. The simulated B1+ field inside a human head phantom and inside a human head model generated by the birdcage coils driven in circularly polarized (CP) mode at 3T, 5T and 7T was compared. Signal-to-noise ratio (SNR) maps, the inverse g-factor maps for evaluation of parallel imaging performance, anatomic images, angiography images, vessel wall images and susceptibility weighted images (SWI) were acquired using the RF coil assembly at 5T and compared to those acquired using a 32-channel head coil on a 3T MRI scanner. RESULTS: For the EM simulations, 5T MRI provided less RF inhomogeneity compared to that of 7T. In the phantom imaging study, the distributions of the measured B1+ field were consistent with the distributions of the simulated B1+ field. In the human brain imaging study, the average SNR value of the brain in the transversal plane at 5T was 1.6 times of that at 3T. The 48-channel head coil at 5T had higher parallel acceleration capability than the 32-channel head coil at 3T. The anatomic images at 5T also showed higher SNR than those at 3T. Improved delineation of the hippocampus, lenticulostriate arteries, and basilar arteries was observed at 5T compared to 3T. SWI with a higher resolution of 0.3 mm ×0.3 mm ×1.2 mm could be acquired at 5T, which enabled better visualization of small blood vessels compared to that at 3T. CONCLUSIONS: 5T MRI can provide significant SNR improvement compared to that of 3T with less RF inhomogeneity than that of 7T. The ability to obtain high quality in vivo human brain images at 5T using the quadrature birdcage transmit/48-channel receiver coil assembly has significant in clinical and scientific research applications.

摘要

背景:我们旨在证明使用正交鸟笼式发射/48通道接收线圈组件在5特斯拉(T)下生成高分辨率人脑磁共振成像(MRI)的可行性。 方法:设计了一种用于5T人脑成像的正交鸟笼式发射/48通道接收线圈组件。通过电磁(EM)模拟和体模成像实验研究对射频(RF)线圈组件进行了验证。比较了在3T、5T和7T下由鸟笼线圈以圆极化(CP)模式驱动时,在人体头部体模和人体头部模型内模拟的B1+场。使用5T的RF线圈组件获取信噪比(SNR)图、用于评估并行成像性能的逆g因子图、解剖图像、血管造影图像、血管壁图像和磁敏感加权图像(SWI),并与在3T MRI扫描仪上使用32通道头部线圈获取的图像进行比较。 结果:对于EM模拟,与7T相比,5T MRI的RF不均匀性更小。在体模成像研究中,测量的B1+场分布与模拟的B1+场分布一致。在人脑成像研究中,5T时大脑横断面的平均SNR值是3T时的1.6倍。5T的48通道头部线圈比3T的32通道头部线圈具有更高的并行加速能力。5T时的解剖图像也显示出比3T时更高的SNR。与3T相比,在5T时观察到海马体、豆纹动脉和基底动脉的描绘得到改善。在5T时可以获取分辨率更高的0.3 mm×0.3 mm×1.2 mm的SWI,与3T相比,能够更好地显示小血管。 结论:与3T相比,5T MRI可以显著提高SNR,且RF不均匀性比7T小。使用正交鸟笼式发射/48通道接收线圈组件在5T下获得高质量体内人脑图像的能力在临床和科研应用中具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/a33a10f66886/qims-13-05-3222-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/2dfb0f8a4ff7/qims-13-05-3222-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/3b559b6787f0/qims-13-05-3222-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/f00a7c1c9055/qims-13-05-3222-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/0154a5dde1d7/qims-13-05-3222-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/566702472302/qims-13-05-3222-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/bda98eff6470/qims-13-05-3222-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/402f846f2ae3/qims-13-05-3222-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/4ca4ffe94018/qims-13-05-3222-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/cee625ef4b6f/qims-13-05-3222-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/e0d114005b46/qims-13-05-3222-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/a33a10f66886/qims-13-05-3222-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/2dfb0f8a4ff7/qims-13-05-3222-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/3b559b6787f0/qims-13-05-3222-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/f00a7c1c9055/qims-13-05-3222-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/0154a5dde1d7/qims-13-05-3222-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/566702472302/qims-13-05-3222-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/bda98eff6470/qims-13-05-3222-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/402f846f2ae3/qims-13-05-3222-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/4ca4ffe94018/qims-13-05-3222-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/cee625ef4b6f/qims-13-05-3222-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/e0d114005b46/qims-13-05-3222-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc47/10167427/a33a10f66886/qims-13-05-3222-f11.jpg

相似文献

[1]
5T magnetic resonance imaging: radio frequency hardware and initial brain imaging.

Quant Imaging Med Surg. 2023-5-1

[2]
Enhancing the brain MRI at ultra-high field systems using a meta-array structure.

Med Phys. 2023-12

[3]
An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T.

Magn Reson Med Sci. 2017-7-10

[4]
Design of a novel antisymmetric coil array for parallel transmit cardiac MRI in pigs at 7 T.

J Magn Reson. 2019-7-5

[5]
RF coil design strategies for improving SNR at the ultrahigh magnetic field of 10.5T.

Magn Reson Med. 2025-2

[6]
A Quantitative Comparison of P Magnetic Resonance Spectroscopy RF Coil Sensitivity and SNR between 7T and 10.5T Human MRI Scanners Using a Loop-Dipole P-H Probe.

Sensors (Basel). 2024-9-6

[7]
Multi-port-driven birdcage coil for multiple-mouse MR imaging at 7 T.

Scanning. 2016-11

[8]
No need to detune transmitters in 32-channel receiver arrays at 7 T.

NMR Biomed. 2021-6

[9]
Feasibility of dynamic susceptibility contrast perfusion MR imaging at 3T using a standard quadrature head coil and eight-channel phased-array coil with and without SENSE reconstruction.

J Magn Reson Imaging. 2006-9

[10]
Quantitative assessment of phased array coils with different numbers of receiving channels in terms of signal-to-noise ratio and spatial noise variation in magnetic resonance imaging.

PLoS One. 2019-7-5

引用本文的文献

[1]
Diff5T: Benchmarking human brain diffusion MRI with an extensive 5.0 Tesla k-space and spatial dataset.

Sci Data. 2025-8-4

[2]
Comparative evaluation of 5.0 T and 3.0 T time-of-flight magnetic resonance angiography in assessing collateral circulation in moyamoya angiopathy.

Cardiovasc Diagn Ther. 2025-6-30

[3]
Whole-cerebrum three-dimensional pseudo-continuous arterial spin labeling at 5T: reproducibility and preliminary application in moyamoya.

Quant Imaging Med Surg. 2025-5-1

[4]
Engineering clinical translation of OGSE diffusion MRI.

Magn Reson Med. 2025-9

[5]
3D time-of-flight magnetic resonance angiography of lenticulostriate artery imaging at 5.0 Tesla: a hierarchic analysis method and clinical applications.

Quant Imaging Med Surg. 2025-3-3

[6]
Open-transmit and flexible receiver array for high resolution ultrahigh-field fMRI of the human sensorimotor cortex.

Commun Biol. 2025-3-22

[7]
Visualization of perivascular spaces in the human brain with 5-T magnetic resonance imaging.

BMC Neurosci. 2025-3-3

[8]
A multimodal axial array resonator and its application in radiofrequency (RF) volume coil designs for low-field open magnetic resonance imaging (MRI).

Quant Imaging Med Surg. 2024-12-5

[9]
Magnetic resonance cholangiopancreatography at 5.0 T: quantitative and qualitative comparison with 3.0 T.

BMC Med Imaging. 2024-12-5

[10]
Comparison of single shot and multishot diffusion-weighted imaging in 5-T magnetic resonance imaging for brain disease diagnosis.

Quant Imaging Med Surg. 2024-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索