Suppr超能文献

用于神经元形态分类中特征选择的二元矩阵重排滤波器

Binary matrix shuffling filter for feature selection in neuronal morphology classification.

作者信息

Sun Congwei, Dai Zhijun, Zhang Hongyan, Li Lanzhi, Yuan Zheming

机构信息

Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China ; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China.

Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China ; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China ; College of Information Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.

出版信息

Comput Math Methods Med. 2015;2015:626975. doi: 10.1155/2015/626975. Epub 2015 Mar 29.

Abstract

A prerequisite to understand neuronal function and characteristic is to classify neuron correctly. The existing classification techniques are usually based on structural characteristic and employ principal component analysis to reduce feature dimension. In this work, we dedicate to classify neurons based on neuronal morphology. A new feature selection method named binary matrix shuffling filter was used in neuronal morphology classification. This method, coupled with support vector machine for implementation, usually selects a small amount of features for easy interpretation. The reserved features are used to build classification models with support vector classification and another two commonly used classifiers. Compared with referred feature selection methods, the binary matrix shuffling filter showed optimal performance and exhibited broad generalization ability in five random replications of neuron datasets. Besides, the binary matrix shuffling filter was able to distinguish each neuron type from other types correctly; for each neuron type, private features were also obtained.

摘要

正确分类神经元是理解神经元功能和特性的一个先决条件。现有的分类技术通常基于结构特征,并采用主成分分析来降低特征维度。在这项工作中,我们致力于基于神经元形态对神经元进行分类。一种名为二元矩阵洗牌滤波器的新特征选择方法被用于神经元形态分类。该方法与支持向量机结合实现,通常会选择少量特征以便于解释。保留的特征用于构建支持向量分类和另外两种常用分类器的分类模型。与参考的特征选择方法相比,二元矩阵洗牌滤波器在神经元数据集的五次随机重复中表现出最优性能和广泛的泛化能力。此外,二元矩阵洗牌滤波器能够正确区分每种神经元类型与其他类型;对于每种神经元类型,还获得了其私有特征。

相似文献

1
Binary matrix shuffling filter for feature selection in neuronal morphology classification.
Comput Math Methods Med. 2015;2015:626975. doi: 10.1155/2015/626975. Epub 2015 Mar 29.
2
Improving accuracy for cancer classification with a new algorithm for genes selection.
BMC Bioinformatics. 2012 Nov 13;13:298. doi: 10.1186/1471-2105-13-298.
3
Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification.
Comput Methods Programs Biomed. 2015 Apr;119(1):29-42. doi: 10.1016/j.cmpb.2015.01.002. Epub 2015 Jan 30.
4
Stable feature selection based on the ensemble L -norm support vector machine for biomarker discovery.
BMC Genomics. 2016 Dec 22;17(Suppl 13):1026. doi: 10.1186/s12864-016-3320-z.
5
A novel feature selection approach for biomedical data classification.
J Biomed Inform. 2010 Feb;43(1):15-23. doi: 10.1016/j.jbi.2009.07.008. Epub 2009 Jul 30.
6
An efficient statistical feature selection approach for classification of gene expression data.
J Biomed Inform. 2011 Aug;44(4):529-35. doi: 10.1016/j.jbi.2011.01.001. Epub 2011 Jan 15.
7
Involvement of Machine Learning for Breast Cancer Image Classification: A Survey.
Comput Math Methods Med. 2017;2017:3781951. doi: 10.1155/2017/3781951. Epub 2017 Dec 31.
8
Fast and efficient lung disease classification using hierarchical one-against-all support vector machine and cost-sensitive feature selection.
Comput Biol Med. 2012 Dec;42(12):1157-64. doi: 10.1016/j.compbiomed.2012.10.001. Epub 2012 Nov 14.
9
Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso.
J Biomed Inform. 2015 Feb;53:277-90. doi: 10.1016/j.jbi.2014.11.013. Epub 2014 Dec 9.
10
R-HEFS: Rough set based heterogeneous ensemble feature selection method for medical data classification.
Artif Intell Med. 2021 Apr;114:102049. doi: 10.1016/j.artmed.2021.102049. Epub 2021 Mar 6.

引用本文的文献

2
Mining Big Neuron Morphological Data.
Comput Intell Neurosci. 2018 Jun 24;2018:8234734. doi: 10.1155/2018/8234734. eCollection 2018.

本文引用的文献

1
Improving accuracy for cancer classification with a new algorithm for genes selection.
BMC Bioinformatics. 2012 Nov 13;13:298. doi: 10.1186/1471-2105-13-298.
2
Gene selection and classification for cancer microarray data based on machine learning and similarity measures.
BMC Genomics. 2011 Dec 23;12 Suppl 5(Suppl 5):S1. doi: 10.1186/1471-2164-12-S5-S1.
3
Uniform approximation is more appropriate for Wilcoxon Rank-Sum Test in gene set analysis.
PLoS One. 2012;7(2):e31505. doi: 10.1371/journal.pone.0031505. Epub 2012 Feb 7.
4
SVM-T-RFE: a novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles.
Biochem Biophys Res Commun. 2012 Mar 9;419(2):148-53. doi: 10.1016/j.bbrc.2012.01.087. Epub 2012 Jan 28.
5
AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
J Theor Biol. 2011 Feb 7;270(1):56-62. doi: 10.1016/j.jtbi.2010.10.037. Epub 2010 Nov 4.
6
Feature selection for gene expression using model-based entropy.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Jan-Mar;7(1):25-36. doi: 10.1109/TCBB.2008.35.
8
SVMs modeling for highly imbalanced classification.
IEEE Trans Syst Man Cybern B Cybern. 2009 Feb;39(1):281-8. doi: 10.1109/TSMCB.2008.2002909. Epub 2008 Dec 9.
10
NeuroMorpho.Org: a central resource for neuronal morphologies.
J Neurosci. 2007 Aug 29;27(35):9247-51. doi: 10.1523/JNEUROSCI.2055-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验