Suppr超能文献

基于用CdSe/ZnS胶体纳米晶体量子点敏化的超薄硅纳米膜的混合光传感器。

Hybrid light sensor based on ultrathin Si nanomembranes sensitized with CdSe/ZnS colloidal nanocrystal quantum dots.

作者信息

Peng Weina, Sampat Siddharth, Rupich Sara M, Anand Benoy, Nguyen Hue Minh, Taylor David, Beardon Brandon E, Gartstein Yuri N, Chabal Yves J, Malko Anton V

机构信息

Department of Materials Science, The University of Texas at Dallas, Richardson, TX 75080, USA.

出版信息

Nanoscale. 2015 May 14;7(18):8524-30. doi: 10.1039/c5nr00334b.

Abstract

We report the observation of a large enhancement of the wavelength-dependent photocurrent in ultrathin silicon nanomembranes (SiNM) decorated with colloidal CdSe/ZnS nanocrystal quantum dots (NQDs). Back-gated, field-effect transistor structures based on 75 nm-thick SiNMs are functionalized with self-assembled monolayers (SAMs) preventing surface oxidation and minimizing the surface defect densities. NQDs are drop cast on the active region of the device and the photocurrent is measured as a function of the excitation wavelength across the NQD absorption region. Photocurrent enhancement on the order of several hundred nA's is observed for NQD/SAM/SiNM devices compared to reference SAM/SiNM structures, with the device peak response closely correlated to the NQD absorption peak. We propose light-induced gating of the surface electrostatic potential and forward self-biasing of the FET channel as the two key mechanisms leading to the large photocurrent increase. Our findings open the possibility of employing silicon-nanocrystal hybrid structures for light sensing applications.

摘要

我们报道了在装饰有胶体CdSe/ZnS纳米晶体量子点(NQD)的超薄硅纳米膜(SiNM)中观察到与波长相关的光电流大幅增强。基于75纳米厚SiNM的背栅场效应晶体管结构通过自组装单分子层(SAM)进行功能化,可防止表面氧化并使表面缺陷密度最小化。将NQD滴铸在器件的有源区域上,并测量光电流作为跨越NQD吸收区域的激发波长的函数。与参考SAM/SiNM结构相比,NQD/SAM/SiNM器件观察到了几百纳安量级的光电流增强,器件的峰值响应与NQD吸收峰密切相关。我们提出表面静电势的光致门控和FET沟道的正向自偏置是导致光电流大幅增加的两个关键机制。我们的发现为将硅纳米晶体混合结构用于光传感应用开辟了可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验