Suppr超能文献

光合膜中光系统II晶体形成的功能意义

Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes.

作者信息

Tietz Stefanie, Puthiyaveetil Sujith, Enlow Heather M, Yarbrough Robert, Wood Magnus, Semchonok Dmitry A, Lowry Troy, Li Zhirong, Jahns Peter, Boekema Egbert J, Lenhert Steven, Niyogi Krishna K, Kirchhoff Helmut

机构信息

From the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340.

the Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands.

出版信息

J Biol Chem. 2015 May 29;290(22):14091-106. doi: 10.1074/jbc.M114.619841. Epub 2015 Apr 20.

Abstract

The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion.

摘要

生物膜中蛋白质的结构组织会影响其功能。叶绿体中的光合类囊体膜具有非凡的能力,能够在无序状态和半结晶状态之间改变其超分子组织。尽管已知向半结晶状态的转变是由非生物因素触发的,但这种蛋白质组织的功能意义尚未得到理解。利用组成型形成半结晶阵列的拟南芥脂肪酸去饱和酶突变体(fad5),我们系统地测试了光合膜中蛋白质晶体的功能影响。在这里,我们表明转变为有序状态促进了光合成分在拥挤的类囊体膜中的分子扩散。像质体醌和叶黄素这样的小亲脂性分子流动性增加,对依赖扩散的电子传递和光保护能量依赖猝灭有影响。然而,大型光系统II超复合体的流动性受损,导致受损蛋白质的修复延迟。我们的结果表明,超分子转变为更有序的状态对光合作用有不同的影响,有利于依赖扩散的电子传递和光保护或蛋白质修复过程,从而微调光合能量转换。

相似文献

1
Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes.
J Biol Chem. 2015 May 29;290(22):14091-106. doi: 10.1074/jbc.M114.619841. Epub 2015 Apr 20.
2
Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C₃ and C₄ plants.
Plant Physiol. 2013 Jan;161(1):497-507. doi: 10.1104/pp.112.207548. Epub 2012 Nov 12.
4
Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis.
Plant J. 2012 Jan;69(2):289-301. doi: 10.1111/j.1365-313X.2011.04790.x. Epub 2011 Oct 21.
5
Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis.
Plant Cell. 2009 Dec;21(12):3950-64. doi: 10.1105/tpc.109.069435. Epub 2009 Dec 22.
6
Diffusion of molecules and macromolecules in thylakoid membranes.
Biochim Biophys Acta. 2014 Apr;1837(4):495-502. doi: 10.1016/j.bbabio.2013.11.003. Epub 2013 Nov 15.
7
Different roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection.
J Biol Chem. 2007 Nov 30;282(48):35056-68. doi: 10.1074/jbc.M704729200. Epub 2007 Oct 3.
8
Significance of protein crowding, order and mobility for photosynthetic membrane functions.
Biochem Soc Trans. 2008 Oct;36(Pt 5):967-70. doi: 10.1042/BST0360967.

引用本文的文献

1
High-intensity pulsed-light cultivation of unicellular algae: Photosynthesis continues in the dark.
Heliyon. 2024 Mar 7;10(5):e27224. doi: 10.1016/j.heliyon.2024.e27224. eCollection 2024 Mar 15.
2
Three-state mathematical model for the assessment of DCMU-treated photosystem II heterogeneity.
Photosynth Res. 2024 Mar;159(2-3):303-320. doi: 10.1007/s11120-024-01077-7. Epub 2024 Mar 11.
3
Drought Tolerance Strategies and Autophagy in Resilient Wheat Genotypes.
Cells. 2022 May 27;11(11):1765. doi: 10.3390/cells11111765.
4
The redox state of the plastoquinone (PQ) pool is connected to thylakoid lipid saturation in a marine diatom.
Photosynth Res. 2022 Aug;153(1-2):71-82. doi: 10.1007/s11120-022-00914-x. Epub 2022 Apr 7.
5
Photosystem II photoinhibition and photoprotection in a lycophyte, Selaginella martensii.
Physiol Plant. 2022 Jan;174(1):e13604. doi: 10.1111/ppl.13604. Epub 2021 Dec 6.
7
Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection.
Nat Plants. 2021 Jul;7(7):979-988. doi: 10.1038/s41477-021-00947-5. Epub 2021 Jun 17.
9
Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico.
Photosynth Res. 2020 Dec;146(1-3):299-329. doi: 10.1007/s11120-020-00777-0. Epub 2020 Aug 11.
10
Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions.
J Biol Chem. 2020 Oct 23;295(43):14537-14545. doi: 10.1074/jbc.RA120.014198. Epub 2020 Jun 19.

本文引用的文献

1
Structure-function analysis of photosystem II subunit S (PsbS) in vivo.
Funct Plant Biol. 2002 Oct;29(10):1131-1139. doi: 10.1071/FP02065.
2
Evolution under the sun: optimizing light harvesting in photosynthesis.
J Exp Bot. 2015 Jan;66(1):7-23. doi: 10.1093/jxb/eru400. Epub 2014 Oct 21.
3
Compartmentalization of the protein repair machinery in photosynthetic membranes.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15839-44. doi: 10.1073/pnas.1413739111. Epub 2014 Oct 20.
5
Biodiversity of NPQ.
J Plant Physiol. 2015 Jan 1;172:13-32. doi: 10.1016/j.jplph.2014.03.004. Epub 2014 Mar 25.
6
Diffusion of molecules and macromolecules in thylakoid membranes.
Biochim Biophys Acta. 2014 Apr;1837(4):495-502. doi: 10.1016/j.bbabio.2013.11.003. Epub 2013 Nov 15.
8
Structural constraints for protein repair in plant photosynthetic membranes.
Plant Signal Behav. 2013 Apr;8(4):e23634. doi: 10.4161/psb.23634. Epub 2013 Jan 18.
9
High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana.
Biochim Biophys Acta. 2013 Mar;1827(3):411-9. doi: 10.1016/j.bbabio.2012.12.003. Epub 2012 Dec 27.
10
Architectural switch in plant photosynthetic membranes induced by light stress.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20130-5. doi: 10.1073/pnas.1214265109. Epub 2012 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验