Suppr超能文献

光胁迫诱导植物光合膜的结构开关。

Architectural switch in plant photosynthetic membranes induced by light stress.

机构信息

Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20130-5. doi: 10.1073/pnas.1214265109. Epub 2012 Nov 19.

Abstract

Unavoidable side reactions of photosynthetic energy conversion can damage the water-splitting photosystem II (PSII) holocomplex embedded in the thylakoid membrane system inside chloroplasts. Plant survival is crucially dependent on an efficient molecular repair of damaged PSII realized by a multistep repair cycle. The PSII repair cycle requires a brisk lateral protein traffic between stacked grana thylakoids and unstacked stroma lamellae that is challenged by the tight stacking and low protein mobility in grana. We demonstrated that high light stress induced two main structural changes that work synergistically to improve the accessibility between damaged PSII in grana and its repair machinery in stroma lamellae: lateral shrinkage of grana diameter and increased protein mobility in grana thylakoids. It follows that high light stress triggers an architectural switch of the thylakoid network that is advantageous for swift protein repair. Studies of the thylakoid kinase mutant stn8 and the double mutant stn7/8 demonstrate the central role of protein phosphorylation for the structural alterations. These findings are based on the elaboration of mathematical tools for analyzing confocal laser-scanning microscopic images to study changes in the sophisticated thylakoid architecture in intact protoplasts.

摘要

光合作用能量转换不可避免的副反应会破坏嵌入叶绿体类囊体膜系统中的水分解光系统 II(PSII)完整复合物。植物的生存取决于通过多步修复循环实现的受损 PSII 的有效分子修复。PSII 修复循环需要在堆叠的类囊体和未堆叠的基质片层之间进行快速的侧向蛋白质运输,但类囊体的紧密堆叠和蛋白质流动性低对其构成挑战。我们证明,高光胁迫诱导了两种主要的结构变化,它们协同作用,提高了类囊体中受损 PSII 与其在基质片层中的修复机制之间的可及性:类囊体直径的横向收缩和类囊体中蛋白质流动性的增加。因此,高光胁迫引发了类囊体网络的结构转换,有利于快速的蛋白质修复。对类囊体激酶突变体 stn8 和双突变体 stn7/8 的研究表明,蛋白质磷酸化对于结构改变起着核心作用。这些发现基于对共聚焦激光扫描显微镜图像进行分析的数学工具的阐述,以研究完整原生质体中复杂的类囊体结构的变化。

相似文献

1
Architectural switch in plant photosynthetic membranes induced by light stress.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20130-5. doi: 10.1073/pnas.1214265109. Epub 2012 Nov 19.
2
Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C₃ and C₄ plants.
Plant Physiol. 2013 Jan;161(1):497-507. doi: 10.1104/pp.112.207548. Epub 2012 Nov 12.
3
Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts.
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 3;369(1640):20130225. doi: 10.1098/rstb.2013.0225. Print 2014 Apr 19.
5
Close Relationships Between the PSII Repair Cycle and Thylakoid Membrane Dynamics.
Plant Cell Physiol. 2016 Jun;57(6):1115-22. doi: 10.1093/pcp/pcw050. Epub 2016 Mar 26.
6
Significance of the photosystem II core phosphatase PBCP for plant viability and protein repair in thylakoid membranes.
Plant Cell Physiol. 2014 Jul;55(7):1245-54. doi: 10.1093/pcp/pcu062. Epub 2014 May 3.
7
Photosystem II function and dynamics in three widely used Arabidopsis thaliana accessions.
PLoS One. 2012;7(9):e46206. doi: 10.1371/journal.pone.0046206. Epub 2012 Sep 28.
8
Structural constraints for protein repair in plant photosynthetic membranes.
Plant Signal Behav. 2013 Apr;8(4):e23634. doi: 10.4161/psb.23634. Epub 2013 Jan 18.
9
Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis.
Plant Cell. 2009 Dec;21(12):3950-64. doi: 10.1105/tpc.109.069435. Epub 2009 Dec 22.
10
Compartmentalization of the protein repair machinery in photosynthetic membranes.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15839-44. doi: 10.1073/pnas.1413739111. Epub 2014 Oct 20.

引用本文的文献

2
Structure, regulation and assembly of the photosynthetic electron transport chain.
Nat Rev Mol Cell Biol. 2025 May 21. doi: 10.1038/s41580-025-00847-y.
3
4
Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy.
Photosynthetica. 2023 Dec 18;61(4):483-491. doi: 10.32615/ps.2023.043. eCollection 2023.
5
Protein phosphorylation and oxidative protein modification promote plant photosystem II disassembly for repair.
Plant Commun. 2025 Mar 10;6(3):101202. doi: 10.1016/j.xplc.2024.101202. Epub 2024 Dec 4.
6
Protein assemblies in the chloroplast compartment.
Front Plant Sci. 2024 Aug 16;15:1380969. doi: 10.3389/fpls.2024.1380969. eCollection 2024.
7
Reversible protein phosphorylation in higher plants: focus on state transitions.
Biophys Rev. 2023 Aug 29;15(5):1079-1093. doi: 10.1007/s12551-023-01116-y. eCollection 2023 Oct.
8
Lipid and protein dynamics of stacked and cation-depletion induced unstacked thylakoid membranes.
BBA Adv. 2021 Jun 13;1:100015. doi: 10.1016/j.bbadva.2021.100015. eCollection 2021.
9
State transition is quiet around pyrenoid and LHCII phosphorylation is not essential for thylakoid deformation in 137c.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2122032119. doi: 10.1073/pnas.2122032119. Epub 2022 Sep 6.
10
How to Measure Grana - Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts.
Front Plant Sci. 2021 Oct 6;12:756009. doi: 10.3389/fpls.2021.756009. eCollection 2021.

本文引用的文献

1
Dynamic control of protein diffusion within the granal thylakoid lumen.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20248-53. doi: 10.1073/pnas.1104141109. Epub 2011 Nov 29.
3
Supramolecular organization of photosystem II in green plants.
Biochim Biophys Acta. 2012 Jan;1817(1):2-12. doi: 10.1016/j.bbabio.2011.05.024. Epub 2011 Jun 23.
4
Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants.
Biochim Biophys Acta. 2012 Jan;1817(1):232-8. doi: 10.1016/j.bbabio.2011.05.005. Epub 2011 May 14.
5
Electron tomography of plant thylakoid membranes.
J Exp Bot. 2011 Apr;62(7):2393-402. doi: 10.1093/jxb/err034. Epub 2011 Mar 25.
6
Quality control of Photosystem II: where and how does the degradation of the D1 protein by FtsH proteases start under light stress?--Facts and hypotheses.
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):229-35. doi: 10.1016/j.jphotobiol.2011.01.016. Epub 2011 Jan 20.
7
Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography.
Plant Physiol. 2011 Apr;155(4):1601-11. doi: 10.1104/pp.110.170647. Epub 2011 Jan 11.
8
Developmental and cell type characterization of bundle sheath and mesophyll chloroplast transcript abundance in maize.
Curr Genet. 2011 Apr;57(2):89-102. doi: 10.1007/s00294-010-0329-8. Epub 2010 Dec 10.
9
Regulation of photosynthetic electron transport.
Biochim Biophys Acta. 2011 Mar;1807(3):375-83. doi: 10.1016/j.bbabio.2010.11.010. Epub 2010 Nov 29.
10
Quality control of photosystem II: FtsH hexamers are localized near photosystem II at grana for the swift repair of damage.
J Biol Chem. 2010 Dec 31;285(53):41972-81. doi: 10.1074/jbc.M110.117432. Epub 2010 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验