Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20130-5. doi: 10.1073/pnas.1214265109. Epub 2012 Nov 19.
Unavoidable side reactions of photosynthetic energy conversion can damage the water-splitting photosystem II (PSII) holocomplex embedded in the thylakoid membrane system inside chloroplasts. Plant survival is crucially dependent on an efficient molecular repair of damaged PSII realized by a multistep repair cycle. The PSII repair cycle requires a brisk lateral protein traffic between stacked grana thylakoids and unstacked stroma lamellae that is challenged by the tight stacking and low protein mobility in grana. We demonstrated that high light stress induced two main structural changes that work synergistically to improve the accessibility between damaged PSII in grana and its repair machinery in stroma lamellae: lateral shrinkage of grana diameter and increased protein mobility in grana thylakoids. It follows that high light stress triggers an architectural switch of the thylakoid network that is advantageous for swift protein repair. Studies of the thylakoid kinase mutant stn8 and the double mutant stn7/8 demonstrate the central role of protein phosphorylation for the structural alterations. These findings are based on the elaboration of mathematical tools for analyzing confocal laser-scanning microscopic images to study changes in the sophisticated thylakoid architecture in intact protoplasts.
光合作用能量转换不可避免的副反应会破坏嵌入叶绿体类囊体膜系统中的水分解光系统 II(PSII)完整复合物。植物的生存取决于通过多步修复循环实现的受损 PSII 的有效分子修复。PSII 修复循环需要在堆叠的类囊体和未堆叠的基质片层之间进行快速的侧向蛋白质运输,但类囊体的紧密堆叠和蛋白质流动性低对其构成挑战。我们证明,高光胁迫诱导了两种主要的结构变化,它们协同作用,提高了类囊体中受损 PSII 与其在基质片层中的修复机制之间的可及性:类囊体直径的横向收缩和类囊体中蛋白质流动性的增加。因此,高光胁迫引发了类囊体网络的结构转换,有利于快速的蛋白质修复。对类囊体激酶突变体 stn8 和双突变体 stn7/8 的研究表明,蛋白质磷酸化对于结构改变起着核心作用。这些发现基于对共聚焦激光扫描显微镜图像进行分析的数学工具的阐述,以研究完整原生质体中复杂的类囊体结构的变化。