Suppr超能文献

C₃ 和 C₄ 植物类囊体膜中色素-蛋白复合物的差异迁移。

Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C₃ and C₄ plants.

机构信息

Institute of Biological Chemistry , Washington State University, Pullman, Washington 99164, USA.

出版信息

Plant Physiol. 2013 Jan;161(1):497-507. doi: 10.1104/pp.112.207548. Epub 2012 Nov 12.

Abstract

The photosynthetic performance of plants is crucially dependent on the mobility of the molecular complexes that catalyze the conversion of sunlight to metabolic energy equivalents in the thylakoid membrane network inside chloroplasts. The role of the extensive folding of thylakoid membranes leading to structural differentiation into stacked grana regions and unstacked stroma lamellae for diffusion-based processes of the photosynthetic machinery is poorly understood. This study examines, to our knowledge for the first time, the mobility of photosynthetic pigment-protein complexes in unstacked thylakoid regions in the C₃ plant Arabidopsis (Arabidopsis thaliana) and agranal bundle sheath chloroplasts of the C₄ plants sorghum (Sorghum bicolor) and maize (Zea mays) by the fluorescence recovery after photobleaching technique. In unstacked thylakoid membranes, more than 50% of the protein complexes are mobile, whereas this number drops to about 20% in stacked grana regions. The higher molecular mobility in unstacked thylakoid regions is explained by a lower protein-packing density compared with stacked grana regions. It is postulated that thylakoid membrane stacking to form grana leads to protein crowding that impedes lateral diffusion processes but is required for efficient light harvesting of the modularly organized photosystem II and its light-harvesting antenna system. In contrast, the arrangement of the photosystem I light-harvesting complex I in separate units in unstacked thylakoid membranes does not require dense protein packing, which is advantageous for protein diffusion.

摘要

植物的光合作用性能在很大程度上取决于在叶绿体类囊体膜网络中催化将阳光转化为代谢能量等价物的分子复合物的流动性。类囊体膜的广泛折叠导致结构分化为堆叠的粒层区域和未堆叠的基质片层,从而促进光合作用机械的扩散过程,但对其作用的了解甚少。本研究首次检查了 C₃ 植物拟南芥(Arabidopsis thaliana)的未堆叠类囊体区域和 C₄ 植物高粱(Sorghum bicolor)和玉米(Zea mays)的无颗粒束鞘叶绿体中光合作用色素 - 蛋白复合物的流动性,使用光漂白后荧光恢复技术。在未堆叠的类囊体膜中,超过 50%的蛋白质复合物是可移动的,而在堆叠的粒层区域中,这一数字下降到约 20%。与堆叠的粒层区域相比,未堆叠的类囊体膜中较低的蛋白质包装密度解释了较高的分子流动性。据推测,类囊体膜的堆叠形成粒层会导致蛋白质拥挤,从而阻碍侧向扩散过程,但对于模块化组织的光系统 II 及其光捕获天线系统的高效光捕获是必需的。相比之下,在未堆叠的类囊体膜中,光系统 I 的光捕获复合物 I 以独立单元的形式排列,不需要密集的蛋白质包装,这有利于蛋白质扩散。

相似文献

1
Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C₃ and C₄ plants.
Plant Physiol. 2013 Jan;161(1):497-507. doi: 10.1104/pp.112.207548. Epub 2012 Nov 12.
3
Architectural switch in plant photosynthetic membranes induced by light stress.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20130-5. doi: 10.1073/pnas.1214265109. Epub 2012 Nov 19.
7
Structural constraints for protein repair in plant photosynthetic membranes.
Plant Signal Behav. 2013 Apr;8(4):e23634. doi: 10.4161/psb.23634. Epub 2013 Jan 18.
8
Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):607-19. doi: 10.1016/j.bbabio.2015.03.004. Epub 2015 Apr 3.
9
Differences in photosynthetic responses of NADP-ME type C4 species to high light.
Planta. 2017 Mar;245(3):641-657. doi: 10.1007/s00425-016-2632-1. Epub 2016 Dec 18.
10
Proteomic characterization of hierarchical megacomplex formation in Arabidopsis thylakoid membrane.
Plant J. 2017 Dec;92(5):951-962. doi: 10.1111/tpj.13732. Epub 2017 Nov 5.

引用本文的文献

1
Structure, biogenesis, and evolution of thylakoid membranes.
Plant Cell. 2024 Oct 3;36(10):4014-4035. doi: 10.1093/plcell/koae102.
2
Modulation of salt stress in paddy field cyanobacteria with exogenous application of gibberellic acid: growth behavior and antioxidative status.
Physiol Mol Biol Plants. 2023 Jan;29(1):51-68. doi: 10.1007/s12298-022-01266-5. Epub 2023 Jan 16.
5
Polymer-Lipid Hybrid Materials.
Chem Rev. 2021 Nov 24;121(22):13996-14030. doi: 10.1021/acs.chemrev.1c00755. Epub 2021 Nov 9.
7
Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane.
Life (Basel). 2020 Dec 29;11(1):15. doi: 10.3390/life11010015.
8
Measuring the dynamic response of the thylakoid architecture in plant leaves by electron microscopy.
Plant Direct. 2020 Nov 5;4(11):e00280. doi: 10.1002/pld3.280. eCollection 2020 Nov.
9
Modeling the Role of LHCII-LHCII, PSII-LHCII, and PSI-LHCII Interactions in State Transitions.
Biophys J. 2020 Jul 21;119(2):287-299. doi: 10.1016/j.bpj.2020.05.034. Epub 2020 Jun 12.
10
Lattice Models for Protein Organization throughout Thylakoid Membrane Stacks.
Biophys J. 2020 Jun 2;118(11):2680-2693. doi: 10.1016/j.bpj.2020.03.036. Epub 2020 May 1.

本文引用的文献

2
Preparation of highly enriched photosystem II membrane vesicles by a non-detergent method.
Photosynth Res. 1989 Jun;20(3):249-59. doi: 10.1007/BF00034068.
3
Architectural switch in plant photosynthetic membranes induced by light stress.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20130-5. doi: 10.1073/pnas.1214265109. Epub 2012 Nov 19.
4
Reprint of: physiology of PSI cyclic electron transport in higher plants.
Biochim Biophys Acta. 2011 Aug;1807(8):906-11. doi: 10.1016/j.bbabio.2011.05.008. Epub 2011 May 13.
5
Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants.
Biochim Biophys Acta. 2012 Jan;1817(1):232-8. doi: 10.1016/j.bbabio.2011.05.005. Epub 2011 May 14.
7
Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography.
Plant Physiol. 2011 Apr;155(4):1601-11. doi: 10.1104/pp.110.170647. Epub 2011 Jan 11.
8
Developmental and cell type characterization of bundle sheath and mesophyll chloroplast transcript abundance in maize.
Curr Genet. 2011 Apr;57(2):89-102. doi: 10.1007/s00294-010-0329-8. Epub 2010 Dec 10.
9
Fine structure of granal thylakoid membrane organization using cryo electron tomography.
Biochim Biophys Acta. 2011 Mar;1807(3):368-74. doi: 10.1016/j.bbabio.2010.11.007. Epub 2010 Nov 24.
10
The GDC1 gene encodes a novel ankyrin domain-containing protein that is essential for grana formation in Arabidopsis.
Plant Physiol. 2011 Jan;155(1):130-41. doi: 10.1104/pp.110.165589. Epub 2010 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验