Institute of Biological Chemistry , Washington State University, Pullman, Washington 99164, USA.
Plant Physiol. 2013 Jan;161(1):497-507. doi: 10.1104/pp.112.207548. Epub 2012 Nov 12.
The photosynthetic performance of plants is crucially dependent on the mobility of the molecular complexes that catalyze the conversion of sunlight to metabolic energy equivalents in the thylakoid membrane network inside chloroplasts. The role of the extensive folding of thylakoid membranes leading to structural differentiation into stacked grana regions and unstacked stroma lamellae for diffusion-based processes of the photosynthetic machinery is poorly understood. This study examines, to our knowledge for the first time, the mobility of photosynthetic pigment-protein complexes in unstacked thylakoid regions in the C₃ plant Arabidopsis (Arabidopsis thaliana) and agranal bundle sheath chloroplasts of the C₄ plants sorghum (Sorghum bicolor) and maize (Zea mays) by the fluorescence recovery after photobleaching technique. In unstacked thylakoid membranes, more than 50% of the protein complexes are mobile, whereas this number drops to about 20% in stacked grana regions. The higher molecular mobility in unstacked thylakoid regions is explained by a lower protein-packing density compared with stacked grana regions. It is postulated that thylakoid membrane stacking to form grana leads to protein crowding that impedes lateral diffusion processes but is required for efficient light harvesting of the modularly organized photosystem II and its light-harvesting antenna system. In contrast, the arrangement of the photosystem I light-harvesting complex I in separate units in unstacked thylakoid membranes does not require dense protein packing, which is advantageous for protein diffusion.
植物的光合作用性能在很大程度上取决于在叶绿体类囊体膜网络中催化将阳光转化为代谢能量等价物的分子复合物的流动性。类囊体膜的广泛折叠导致结构分化为堆叠的粒层区域和未堆叠的基质片层,从而促进光合作用机械的扩散过程,但对其作用的了解甚少。本研究首次检查了 C₃ 植物拟南芥(Arabidopsis thaliana)的未堆叠类囊体区域和 C₄ 植物高粱(Sorghum bicolor)和玉米(Zea mays)的无颗粒束鞘叶绿体中光合作用色素 - 蛋白复合物的流动性,使用光漂白后荧光恢复技术。在未堆叠的类囊体膜中,超过 50%的蛋白质复合物是可移动的,而在堆叠的粒层区域中,这一数字下降到约 20%。与堆叠的粒层区域相比,未堆叠的类囊体膜中较低的蛋白质包装密度解释了较高的分子流动性。据推测,类囊体膜的堆叠形成粒层会导致蛋白质拥挤,从而阻碍侧向扩散过程,但对于模块化组织的光系统 II 及其光捕获天线系统的高效光捕获是必需的。相比之下,在未堆叠的类囊体膜中,光系统 I 的光捕获复合物 I 以独立单元的形式排列,不需要密集的蛋白质包装,这有利于蛋白质扩散。