Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S3H6, Canada.
Acc Chem Res. 2015 May 19;48(5):1494-502. doi: 10.1021/acs.accounts.5b00045. Epub 2015 Apr 21.
This is an Account of our development of iron-based catalysts for the asymmetric transfer hydrogenation (ATH) and asymmetric pressure hydrogenation (AH) of ketones and imines. These chemical processes provide enantiopure alcohols and amines for use in the pharmaceutical, agrochemical, fragrance, and other fine chemical industries. Fundamental principles of bifunctional reactivity obtained by studies of ruthenium catalysts by Noyori's group and our own with tetradentate ligands with tertiary phosphine and secondary amine donor groups were applied to improve the performance of these first iron(II) catalysts. In particular the correct positioning of a bifunctional H-Fe-NH unit in an iron hydride amine complex leads to exceptional catalyst activity because of the low energy barrier of dihydrogen transfer to the polar bond of the substrate. In addition the ligand structure with this NH group along with an asymmetric array of aryl groups orients the incoming substrate by hydrogen-bonding, and steric interactions provide the hydrogenated product in high enantioselectivity for several classes of substrates. Enantiomerically pure diamines or diphenylphosphino-amine compounds are used as the source of the asymmetry in the tetradentate ligands formed by the condensation of the amines with dialkyl- or diaryl-phosphinoaldehydes, a synthesis that is templated by Fe(II). The commercially available ortho-diphenylphosphinobenzaldehyde was used in the initial studies, but then diaryl-phosphinoacetaldehydes were found to produce much more effective ligands for iron(II). Once the mechanism of catalysis became clearer, the iron-templated synthesis of (S,S)-PAr2CH2CH2NHCHPhCHPhNH2 ligand precursors was developed to specifically introduce a secondary amine in the precatalyst structures. The reaction of a precatalyst with strong base yields a key iron-amido complex that reacts with isopropanol (in ATH) or dihydrogen (in AH) to generate an iron hydride with the Fe-H bond parallel to the secondary amine N-H. In the AH reactions, the correct acidity of the intermediate iron-dihydrogen complex and correct basicity of the amide are important factors for the heterolytic splitting of the dihydrogen to generate the H-Fe-N-H unit; the acidity of dihydrogen complexes including those found in hydrogenases can be estimated by a simple additive ligand acidity constant method. The placement of the hydridic-protonic Fe-H···HN interaction in the asymmetric catalyst structure influences the enantioinduction. The sense of enantioinduction is predictable from the structure of the H-Fe-N-H-containing catalyst interacting with the ketone in the same way as related H-Ru-N-H-containing catalysts. The modular construction of the catalysts permits large variations in order to produce alcohol or amine products with enantiomeric excess in the 90-100% range in several cases.
这是我们在酮和亚胺的不对称转移氢化(ATH)和不对称压力氢化(AH)中开发铁基催化剂的研究成果。这些化学过程为制药、农业化学、香料和其他精细化工行业提供了手性纯醇和胺。通过 Noyori 小组和我们自己用带有叔膦和仲胺给体基团的四齿配体对钌催化剂进行的研究,获得了双功能反应性的基本原理,并应用于提高这些第一代铁(II)催化剂的性能。特别是,在铁氢化物胺配合物中正确定位双功能 H-Fe-NH 单元,由于氢向底物的极性键转移的能量壁垒较低,因此会导致异常高的催化剂活性。此外,带有 NH 基团的配体结构以及芳基的不对称排列通过氢键使反应物定向,并且空间相互作用以高对映选择性提供了几类底物的加氢产物。手性纯二胺或二苯基膦-胺化合物用作四齿配体的不对称源,该四齿配体由胺与二烷基或二芳基膦醛缩合而成,该合成由 Fe(II)模板化。在最初的研究中使用了商业上可获得的邻二苯基膦苯甲醛,但后来发现二芳基膦基乙醛产生了更有效的铁(II)配体。一旦催化机制变得更加清晰,就开发了铁模板合成(S,S)-PAr2CH2CH2NHCHPhCHPhNH2配体前体的方法,以在预催化剂结构中专门引入仲胺。与强碱反应的预催化剂生成关键的铁-酰胺配合物,该配合物与异丙醇(在 ATH 中)或氢气(在 AH 中)反应,生成具有 Fe-H 键与仲胺 N-H 平行的铁氢化物。在 AH 反应中,中间铁-二氢配合物的正确酸度和酰胺的正确碱性是氢解分裂二氢生成 H-Fe-N-H 单元的重要因素;包括氢化酶中发现的那些的二氢配合物的酸度可以通过简单的加合配体酸度常数方法来估计。在不对称催化剂结构中放置氢质子化的 Fe-H···HN 相互作用会影响对映诱导。与相关的 H-Ru-N-H 含催化剂一样,手性诱导的方向可以从与酮相互作用的含 H-Fe-N-H 的催化剂的结构中预测。催化剂的模块化结构允许进行较大的变化,以便在几种情况下以 90-100%的对映体过量生产醇或胺产物。