Patrick Evan A, Sharada Shaama Mallikarjun, Zoraster Anya, Erickson Jeremy D, Ryan David E, Bullock R Morris, Tran Ba L
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
Mork Family Dept. of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202510627. doi: 10.1002/anie.202510627. Epub 2025 Jun 29.
CuH-catalyzed olefin hydrogenation is rare compared to those of carbonyl-derived substrates. Olefin insertion into Cu-H to form Cu-alkyl is ubiquitous; however, subsequent H activation remains unknown to our knowledge. Herein, we investigated the transformations of β-H elimination, H cleavage, and catalytic olefin hydrogenation in a series of linear and trigonal planar Cu(I)-alkyl complexes supported by monodentate N-heterocyclic carbene and bidentate naphthyridine-bis(carbene) ligands, respectively. Contrary to unreactive linear species, trigonal planar variants promote β-H elimination, hydrogenolysis, and catalytic hydrogenation of unactivated alkenes at mild temperatures and H pressure. The rare isolation of a naphthyridine-bis(carbene)CuH monomer further affirms two predominant competing pathways for H cleavage of metal-ligand cooperativity at Cu(I)-alkyl or internal electrophilic substitution at Cu(I)-OH. Employing either isolated or in situ generated Cu(I)-OH complex, via protonolysis of alkyl precatalyst by adventitious water, significantly accelerated catalysis compared to that operating primarily by the metal-ligand cooperativity pathway. DFT calculations and energy decomposition analysis on the disparate β-H elimination reactivity between linear and trigonal planar tert-butyl complexes and the mechanism of H activation at a hydroxide complex, indicate that coordination geometry at Cu(I) and properties of the naphthyridine-bis(carbene) ligand are integral to the transformations reported here.
与羰基衍生底物的氢化反应相比,CuH催化的烯烃氢化反应较为罕见。烯烃插入到Cu-H中形成Cu-烷基的反应很普遍;然而,据我们所知,随后的H活化仍然未知。在此,我们分别研究了一系列由单齿N-杂环卡宾和双齿萘啶-双(卡宾)配体支持的线性和三角平面Cu(I)-烷基配合物中的β-H消除、H裂解和催化烯烃氢化反应。与无反应性的线性物种相反,三角平面变体在温和的温度和H压力下促进未活化烯烃的β-H消除、氢解和催化氢化。萘啶-双(卡宾)CuH单体的罕见分离进一步证实了在Cu(I)-烷基处金属-配体协同作用的H裂解或在Cu(I)-OH处内部亲电取代的两个主要竞争途径。与主要通过金属-配体协同作用途径进行的催化相比,通过引入的水对烷基预催化剂进行质子解作用,使用分离的或原位生成的Cu(I)-OH配合物显著加速了催化反应。对线性和三角平面叔丁基配合物之间不同的β-H消除反应性以及氢氧化物配合物处的H活化机理进行的DFT计算和能量分解分析表明,Cu(I)处的配位几何结构和萘啶-双(卡宾)配体的性质对于本文报道的转化反应至关重要。