Complex Systems Simulation and the Electronics and Computer Science Department, University of Southampton, UK.
School of Chemistry, University of Southampton, UK.
J Colloid Interface Sci. 2015 Aug 1;451:231-44. doi: 10.1016/j.jcis.2015.01.094. Epub 2015 Mar 30.
Silanol groups at the silica-water interface determine not only the surface charge, but also have an important role in the binding of ions and biomolecules. As the pH is increased above pH 2, the silica surface develops a net negative charge primarily due to deprotonation of the silanol group. An improved understanding of the energetics and mechanisms of this fundamentally important process would further understanding of the relevant dynamics.
Density Functional Theory ab initio molecular dynamics and geometry optimisations were used to investigate the mechanisms of surface neutralisation and charging in the presence of OH(-) and H3O(+) respectively. This charging mechanism has received little attention in the literature.
The protonation or deprotonation of isolated silanols in the presence of H3O(+) or OH(-), respectively, was shown to be a highly rapid, exothermic reaction with no significant activation energy. This process occurred via a concerted motion of the protons through 'water wires'. Geometry optimisations of large water clusters at the silica surface demonstrated proton transfer to the surface occurring via the rarely discussed 'proton holes' mechanism. This indicates that surface protonation is possible even when the hydronium ion is distant (at least 4 water molecules separation) from the surface.
二氧化硅-水界面处的硅醇基团不仅决定了表面电荷,而且在离子和生物分子的结合中也起着重要作用。随着 pH 值升高到 pH2 以上,二氧化硅表面由于硅醇基团的去质子化而产生净负电荷。对这一基本重要过程的能量学和机制的深入理解将进一步加深对相关动力学的理解。
使用密度泛函理论从头算分子动力学和几何优化来研究分别存在 OH(-)和 H3O(+)时表面中和和带电的机制。这一充电机制在文献中很少受到关注。
在 H3O(+)或 OH(-)的存在下,孤立硅醇的质子化或去质子化被证明是一个快速的放热反应,没有显著的活化能。这个过程是通过质子通过“水线”的协同运动发生的。在二氧化硅表面的大水分子簇的几何优化表明,质子通过很少被讨论的“质子孔”机制转移到表面。这表明,即使在水合氢离子远离(至少相隔 4 个水分子)表面时,表面质子化也是可能的。