Suppr超能文献

生理流体中氧化铜纳米片相互作用势的平均场泊松-玻尔兹曼理论评估

A Mean Field Poisson-Boltzmann Theory Assessment of Copper Oxide Nanosheets Interaction Potential in Physiological Fluids.

作者信息

Amadu Mumuni, Raheem Nafisat Motunrayo, Miadonye Adango

机构信息

School of Science & Technology, Cape Breton University, Sydney, NS B1M 1A2, Canada.

出版信息

Nanomaterials (Basel). 2025 Aug 29;15(17):1330. doi: 10.3390/nano15171330.

Abstract

In recent times, copper oxide nanosheets (CONSs) have shown a broad spectrum of industrial uses due to their unique properties, including high electrical conductivity, surface-enhanced catalytic activity, etc. Therefore, industrial processes involved in their manufacture can give rise to airborne particulates. Several in vivo studies have reported toxicity of these nanoparticles due to their interactions with biological molecules. Generally, literature-based assessment of their toxicity has centered on experimental findings. In this paper, we report for the first time, trend in CONSs interactions in intracellular and extracellular fluids, using the Nonlinear Mean Field Poisson-Boltzmann theory. Our theoretical prediction for zeta potential in the extracellular fluid environment align with published values in the literature. Based on this theoretical approach, we also demonstrate that double layer disjoining pressure due to interacting double layers of CONSs is generally higher in intracellular fluids. The findings of our theoretical approach highlight the importance of predicting the extent of cellular uptake potential of CONSs in organs that are prone to such airborne environmental particulates.

摘要

近年来,氧化铜纳米片(CONSs)因其独特的性能,包括高导电性、表面增强催化活性等,展现出广泛的工业用途。因此,其制造过程中涉及的工业生产会产生空气传播颗粒物。多项体内研究报告了这些纳米颗粒因其与生物分子的相互作用而具有的毒性。一般来说,基于文献对其毒性的评估主要集中在实验结果上。在本文中,我们首次使用非线性平均场泊松-玻尔兹曼理论报告了CONSs在细胞内液和细胞外液中的相互作用趋势。我们对细胞外液环境中zeta电位的理论预测与文献中公布的值一致。基于这种理论方法,我们还证明,由于CONSs相互作用的双层导致的双层分离压力在细胞内液中通常更高。我们理论方法的研究结果突出了预测CONSs在易受此类空气传播环境颗粒物影响的器官中的细胞摄取潜力程度的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec0/12430301/f4741971fc99/nanomaterials-15-01330-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验