Khaska Mahmoud, Le Gal La Salle Corinne, Verdoux Patrick, Boutin René
Univ. Nimes, EA 7352 CHROME, rue du Dr Georges Salan, 30021 Nimes, France; Aix-Marseille Université, CNRS-IRD-Collège de France, UM 34 CEREGE, Technopôle de l'Arbois, BP80, 13545 Aix-en-Provence, France.
Univ. Nimes, EA 7352 CHROME, rue du Dr Georges Salan, 30021 Nimes, France; Aix-Marseille Université, CNRS-IRD-Collège de France, UM 34 CEREGE, Technopôle de l'Arbois, BP80, 13545 Aix-en-Provence, France.
J Contam Hydrol. 2015 Jun-Jul;177-178:122-35. doi: 10.1016/j.jconhyd.2015.03.008. Epub 2015 Apr 7.
Arsenic contamination of stream waters and groundwater is a real issue in Au-As mine environments. At the Salsigne Au-As mine, southern France, arsenic contamination persists after closure and remediation of the site. In this study, natural and anthropogenic arsenic inputs in surface water and groundwater are identified based on (87)Sr/(86)Sr, and δ(18)O and δ(2)H isotopic composition of water. In the wet season, downstream of the remediated zone, the arsenic contents in stream water and alluvial aquifer groundwater are high, with values in the order of 36 μg/L and 40 μg/L respectively, while upstream natural background average concentrations are around 4 μg/L. Locally down-gradient of the reclaimed area, arsenic concentrations in stream water showed 2 peaks, one during an important rainy event (101 mm) in the wet season in May, and a longer one over the dry period, reaching 120 and 110 μg/L respectively. The temporal variations in arsenic content in stream water can be explained i) during the dry season, by release of arsenic stored in the alluvial sediments through increased contribution from base flow and decreased stream flow and ii) during major rainy events, by mobilization of arsenic associated with important surface runoff. The (87)Sr/(86)Sr ratios associated with increasing arsenic content in stream waters downstream of the reclaimed area are significantly lower than that of the natural Sr inherited from Variscan formations. These low (87)Sr/(86)Sr ratios are likely to be associated with the decontaminating water treatment processes, used in the past and still at present, where CaO, produced from marine limestone and therefore showing a low (87)Sr/(86)Sr ratios, is used to precipitate Ca3(AsO4)2. The low Sr isotope signatures will then impact on the Sr isotope ratio of (1) the Ca-arsenate stored in tailing dams, (2) effluent currently produced by water treatment process and (3) groundwater draining from the overall site. Furthermore, Δ(2)H shows that the low (87)Sr/(86)Sr ratio, arsenic rich water is characterized by an evaporated signature suggesting a potential influence of water impacted by evaporation during storage in decantation lagoons. This study shows the suitability of Sr and stable isotopes of water as tracers to differentiate natural and anthropogenic sources of arsenic release or other trace elements from mining context where CaO is used for water treatment.
在金 - 砷矿环境中,溪流水体和地下水中的砷污染是一个现实问题。在法国南部的萨尔西涅金 - 砷矿,尽管该场地已关闭并进行了修复,但砷污染依然存在。在本研究中,基于水的(87)Sr/(86)Sr、δ(18)O和δ(2)H同位素组成,确定了地表水和地下水中自然和人为的砷输入。在雨季,修复区下游的溪流水和冲积含水层地下水中的砷含量很高,分别约为36μg/L和40μg/L,而上游自然背景平均浓度约为4μg/L。在填海区局部下游,溪流水体中的砷浓度出现了两个峰值,一个出现在5月雨季的一次重要降雨事件(101毫米)期间,另一个在旱季持续时间较长,分别达到120μg/L和110μg/L。溪流水体中砷含量的时间变化可以这样解释:i)在旱季,由于基流贡献增加和溪流流量减少,储存在冲积沉积物中的砷被释放;ii)在主要降雨事件期间,与大量地表径流相关的砷被 mobilized。在填海区下游,与溪流水体中砷含量增加相关的(87)Sr/(86)Sr比值明显低于从华力西地层继承的天然锶的比值。这些低(87)Sr/(86)Sr比值可能与过去和现在仍在使用的净化水处理过程有关,在该过程中,由海洋石灰岩产生、因此(87)Sr/(86)Sr比值较低的CaO被用于沉淀Ca3(AsO4)2。低锶同位素特征随后将影响(1)尾矿坝中储存的砷酸钙、(2)水处理过程目前产生的废水以及(3)整个场地排出的地下水的锶同位素比值。此外,Δ(2)H表明,低(87)Sr/(86)Sr比值、富含砷的水具有蒸发特征,这表明在倾析泻湖储存期间,水受到蒸发的潜在影响。这项研究表明,锶和水的稳定同位素适合作为示踪剂,以区分来自使用CaO进行水处理的采矿环境中的砷释放或其他微量元素的自然和人为来源。 (注:“mobilization”此处可能是“活化、 mobilize 使活动、使 mobilize 动员”之意,结合语境推测为与径流相关的砷被活化之类的意思,但原词不太准确,需结合更多背景知识确定准确含义)