Zou Hong Yan, Gao Peng Fei, Gao Ming Xuan, Huang Cheng Zhi
Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China.
Analyst. 2015 Jun 21;140(12):4121-9. doi: 10.1039/c5an00221d. Epub 2015 Apr 22.
Full understanding and easy construction of specific biosensing principles is necessary for disease diagnostics and therapeutics in the hope of creating new types of biosensors. Herein, we developed a new conceptual nanobiosensing platform by coupling nanometal surface energy transfer (NSET) and photo-induced electron transfer (PET) with polydopamine-embedded Cu(2-x)Se nanoparticles (Cu(2-x)SeNPs@pDA) and DNA-conjugated fluorescent organic dyes. The new prepared Cu(2-x)SeNPs@pDA has intense and broad localized surface plasmon resonance (LSPR) absorption over UV to near infrared (NIR) wavelengths, with different affinities toward ssDNA versus dsDNA. It also exhibits a high multiplexed fluorescence quenching ability, and thus can act as an acceptor in the energy transfer and electron transfer interactions between Cu(2-x)SeNPs@pDA and fluorescent organic dyes. As a proof of concept, a new biosensing platform has been successfully developed to target biomacromolecules such as DNA and proteins, in which the NSET and PET interactions between Cu(2-x)SeNPs@pDA and three different DNA-conjugated fluorescent dyes have been identified using steady-state and time-resolved fluorescence. A simple mathematical model was further applied to simulate the respective contributions of the coexisting NSET and PET to the total quenching observed for each DNA-conjugated dye in this sensing system. This study highlights the importance of understanding the mechanistic details of NSET and PET coupling processes, and the disclosed coupling mechanism of NSET and PET (NSET©PET) in the systems of Cu(2-x)SeNPs@pDA with wide wavelength range dyes provides new opportunities for sensitive biosensing applications.
为了开发新型生物传感器用于疾病诊断和治疗,全面理解并轻松构建特定的生物传感原理是必要的。在此,我们通过将纳米金属表面能量转移(NSET)和光诱导电子转移(PET)与聚多巴胺包埋的Cu(2-x)Se纳米颗粒(Cu(2-x)SeNPs@pDA)以及DNA共轭荧光有机染料相结合,开发了一种新的概念性纳米生物传感平台。新制备的Cu(2-x)SeNPs@pDA在紫外到近红外(NIR)波长范围内具有强烈且宽泛的局域表面等离子体共振(LSPR)吸收,对单链DNA和双链DNA具有不同的亲和力。它还表现出高多重荧光猝灭能力,因此可在Cu(2-x)SeNPs@pDA与荧光有机染料之间的能量转移和电子转移相互作用中充当受体。作为概念验证,已成功开发出一种针对DNA和蛋白质等生物大分子的新型生物传感平台,其中利用稳态和时间分辨荧光确定了Cu(2-x)SeNPs@pDA与三种不同DNA共轭荧光染料之间的NSET和PET相互作用。进一步应用一个简单的数学模型来模拟共存的NSET和PET对该传感系统中每种DNA共轭染料观察到的总猝灭的各自贡献。本研究突出了理解NSET和PET耦合过程机制细节的重要性,并且在具有宽波长范围染料的Cu(2-x)SeNPs@pDA系统中公开的NSET和PET耦合机制(NSET©PET)为灵敏的生物传感应用提供了新机遇。