†Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8511, Japan.
‡Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259-S2-13 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
J Am Chem Soc. 2015 May 13;137(18):5939-47. doi: 10.1021/jacs.5b00086. Epub 2015 May 1.
Aromatic stacks formed through self-assembly are promising building blocks for the construction of molecular electronic devices with adjustable electronic functions, in which noncovalently bound π-stacks act as replaceable modular components. Here we describe the electron-transport properties of single-molecule aromatic stacks aligned in a self-assembled cage, using scanning probe microscopic and break junction methods. Same and different modular aromatic pairs are noncovalently bound and stacked within the molecular cage holder, which leads to diverse electronic functions. The insertion of same pairs induces high electronic conductivity (10(-3)-10(-2) G0, G0 = 2e(2)/h), while different pairs develop additional electronic rectification properties. The rectification ratio was, respectively, estimated to be 1.4-2 and >10 in current-voltage characteristics and molecular orientation-dependent conductance measurements at a fixed bias voltage. Theoretical calculations demonstrate that this rectification behavior originates from the distinct stacking order of the internal aromatic components against the electron-transport direction and the corresponding lowest unoccupied molecular orbital conduction channels localized on one side of the molecular junctions.
通过自组装形成的芳族堆积物是构建具有可调电子功能的分子电子器件的有前途的构建块,其中非共价键合的π堆积物作为可替换的模块组件。在这里,我们使用扫描探针显微镜和断裂结方法描述了在自组装笼中排列的单分子芳族堆积物的电子输运性质。相同和不同的模块芳族对在分子笼支架内非共价键合和堆积,从而产生不同的电子功能。相同对的插入诱导出高电子导电性(10(-3)-10(-2) G0,G0 = 2e(2)/h),而不同对则发展出额外的电子整流性质。在固定偏压下的电流-电压特性和分子取向依赖性电导测量中,分别估计整流比为 1.4-2 和>10。理论计算表明,这种整流行为源于内部芳族成分的不同堆积顺序,以及沿电子输运方向和相应的最低未占据分子轨道传导通道在分子结的一侧的局部化。