Ellingson Benjamin M, Lai Albert, Nguyen Huytram N, Nghiemphu Phioanh L, Pope Whitney B, Cloughesy Timothy F
UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, California. Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California. Biomedical Physics Program, David Geffen School of Medicine, University of California, Los Angeles, California. Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, California. UCLA Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California. Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California.
UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, California. Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California. Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California.
Clin Cancer Res. 2015 Oct 1;21(19):4373-83. doi: 10.1158/1078-0432.CCR-14-2862. Epub 2015 Apr 21.
Evaluation of nonenhancing tumor (NET) burden is an important yet challenging part of brain tumor response assessment. This study focuses on using dual-echo turbo spin-echo MRI as a means of quickly estimating tissue T2, which can be used to objectively define NET burden.
A series of experiments were performed to establish the use of T2 maps for defining NET burden. First, variation in T2 was determined using the American College of Radiology (ACR) water phantoms in 16 scanners evaluated over 3 years. Next, the sensitivity and specificity of T2 maps for delineating NET from other tissues were examined. Then, T2-defined NET was used to predict survival in separate subsets of patients with glioblastoma treated with radiotherapy, concurrent radiation, and chemotherapy, or bevacizumab at recurrence.
Variability in T2 in the ACR phantom was 3% to 5%. In training data, ROC analysis suggested that 125 ms < T2 < 250 ms could delineate NET with a sensitivity of >90% and specificity of >65%. Using this criterion, NET burden after completion of radiotherapy alone, or concurrent radiotherapy, and chemotherapy was shown to be predictive of survival (Cox, P < 0.05), and the change in NET volume before and after bevacizumab therapy in recurrent glioblastoma was also a predictive of survival (P < 0.05).
T2 maps using dual-echo data are feasible, stable, and can be used to objectively define NET burden for use in brain tumor characterization, prognosis, and response assessment. The use of effective T2 maps for defining NET burden should be validated in a randomized, clinical trial.
评估无强化肿瘤(NET)负荷是脑肿瘤反应评估中重要但具有挑战性的一部分。本研究聚焦于使用双回波快速自旋回波MRI作为快速估计组织T2的方法,该方法可用于客观定义NET负荷。
进行了一系列实验以确立T2图用于定义NET负荷的用途。首先,使用美国放射学会(ACR)水模在3年期间评估的16台扫描仪中确定T2的变化。接下来,检查T2图区分NET与其他组织的敏感性和特异性。然后,将T2定义的NET用于预测接受放疗、同步放化疗或复发时使用贝伐单抗治疗的胶质母细胞瘤患者不同亚组的生存期。
ACR水模中T2的变异性为3%至5%。在训练数据中,ROC分析表明125 ms < T2 < 250 ms可区分NET,敏感性>90%,特异性>65%。使用该标准,单独放疗或同步放化疗完成后的NET负荷可预测生存期(Cox检验,P < 0.05),复发性胶质母细胞瘤患者贝伐单抗治疗前后NET体积的变化也可预测生存期(P < 0.05)。
使用双回波数据的T2图是可行、稳定的,可用于客观定义NET负荷,以用于脑肿瘤的特征描述、预后评估和反应评估。应在随机临床试验中验证使用有效T2图定义NET负荷的方法。