Suppr超能文献

利用双回波涡轮自旋回波MRI获得的有效T2图对胶质瘤中非强化肿瘤负荷进行定量分析。

Quantification of Nonenhancing Tumor Burden in Gliomas Using Effective T2 Maps Derived from Dual-Echo Turbo Spin-Echo MRI.

作者信息

Ellingson Benjamin M, Lai Albert, Nguyen Huytram N, Nghiemphu Phioanh L, Pope Whitney B, Cloughesy Timothy F

机构信息

UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, California. Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California. Biomedical Physics Program, David Geffen School of Medicine, University of California, Los Angeles, California. Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, California. UCLA Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California. Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California.

UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, California. Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California. Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California.

出版信息

Clin Cancer Res. 2015 Oct 1;21(19):4373-83. doi: 10.1158/1078-0432.CCR-14-2862. Epub 2015 Apr 21.

Abstract

PURPOSE

Evaluation of nonenhancing tumor (NET) burden is an important yet challenging part of brain tumor response assessment. This study focuses on using dual-echo turbo spin-echo MRI as a means of quickly estimating tissue T2, which can be used to objectively define NET burden.

EXPERIMENTAL DESIGN

A series of experiments were performed to establish the use of T2 maps for defining NET burden. First, variation in T2 was determined using the American College of Radiology (ACR) water phantoms in 16 scanners evaluated over 3 years. Next, the sensitivity and specificity of T2 maps for delineating NET from other tissues were examined. Then, T2-defined NET was used to predict survival in separate subsets of patients with glioblastoma treated with radiotherapy, concurrent radiation, and chemotherapy, or bevacizumab at recurrence.

RESULTS

Variability in T2 in the ACR phantom was 3% to 5%. In training data, ROC analysis suggested that 125 ms < T2 < 250 ms could delineate NET with a sensitivity of >90% and specificity of >65%. Using this criterion, NET burden after completion of radiotherapy alone, or concurrent radiotherapy, and chemotherapy was shown to be predictive of survival (Cox, P < 0.05), and the change in NET volume before and after bevacizumab therapy in recurrent glioblastoma was also a predictive of survival (P < 0.05).

CONCLUSIONS

T2 maps using dual-echo data are feasible, stable, and can be used to objectively define NET burden for use in brain tumor characterization, prognosis, and response assessment. The use of effective T2 maps for defining NET burden should be validated in a randomized, clinical trial.

摘要

目的

评估无强化肿瘤(NET)负荷是脑肿瘤反应评估中重要但具有挑战性的一部分。本研究聚焦于使用双回波快速自旋回波MRI作为快速估计组织T2的方法,该方法可用于客观定义NET负荷。

实验设计

进行了一系列实验以确立T2图用于定义NET负荷的用途。首先,使用美国放射学会(ACR)水模在3年期间评估的16台扫描仪中确定T2的变化。接下来,检查T2图区分NET与其他组织的敏感性和特异性。然后,将T2定义的NET用于预测接受放疗、同步放化疗或复发时使用贝伐单抗治疗的胶质母细胞瘤患者不同亚组的生存期。

结果

ACR水模中T2的变异性为3%至5%。在训练数据中,ROC分析表明125 ms < T2 < 250 ms可区分NET,敏感性>90%,特异性>65%。使用该标准,单独放疗或同步放化疗完成后的NET负荷可预测生存期(Cox检验,P < 0.05),复发性胶质母细胞瘤患者贝伐单抗治疗前后NET体积的变化也可预测生存期(P < 0.05)。

结论

使用双回波数据的T2图是可行、稳定的,可用于客观定义NET负荷,以用于脑肿瘤的特征描述、预后评估和反应评估。应在随机临床试验中验证使用有效T2图定义NET负荷的方法。

相似文献

6
Irradiation and bevacizumab in high-grade glioma retreatment settings.放疗联合贝伐珠单抗在高级别胶质瘤再治疗中的应用。
Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):67-76. doi: 10.1016/j.ijrobp.2010.09.002. Epub 2010 Oct 27.

引用本文的文献

10
Response Assessment in Neuro-Oncology Clinical Trials.神经肿瘤学临床试验中的疗效评估
J Clin Oncol. 2017 Jul 20;35(21):2439-2449. doi: 10.1200/JCO.2017.72.7511. Epub 2017 Jun 22.

本文引用的文献

2
Pros and cons of current brain tumor imaging.当前脑肿瘤成像的利弊
Neuro Oncol. 2014 Oct;16 Suppl 7(Suppl 7):vii2-11. doi: 10.1093/neuonc/nou224.
4
Probabilistic radiographic atlas of glioblastoma phenotypes.胶质母细胞瘤表型的概率影像学图谱。
AJNR Am J Neuroradiol. 2013 Mar;34(3):533-40. doi: 10.3174/ajnr.A3253. Epub 2012 Sep 20.
9
Multi-parametric neuroimaging reproducibility: a 3-T resource study.多参数神经影像学可重复性:3-T 资源研究。
Neuroimage. 2011 Feb 14;54(4):2854-66. doi: 10.1016/j.neuroimage.2010.11.047. Epub 2010 Nov 20.
10
Radiographic patterns of relapse in glioblastoma.复发性脑胶质瘤的影像学表现。
J Neurooncol. 2011 Jan;101(2):319-23. doi: 10.1007/s11060-010-0251-4. Epub 2010 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验