Suppr超能文献

构建用于从头蛋白质结构预测的更好的片段库。

Building a better fragment library for de novo protein structure prediction.

作者信息

de Oliveira Saulo H P, Shi Jiye, Deane Charlotte M

机构信息

Department of Statistics, Oxford University, Oxford, Oxfordshire, United Kingdom.

Department of Informatics, UCB Pharma, Slough, United Kingdom; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.

出版信息

PLoS One. 2015 Apr 22;10(4):e0123998. doi: 10.1371/journal.pone.0123998. eCollection 2015.

Abstract

Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. "Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources".

摘要

基于片段的方法是目前从头进行蛋白质结构预测的标准方法。这些方法依赖于准确可靠的片段库来生成良好的结构模型。在这项工作中,我们描述了一种生成结构片段库的新方法及其在基于片段的从头蛋白质结构预测中的应用。文中展示了正确的测试程序在评估片段库质量方面的重要性。特别是,从库中排除与目标序列同源的序列,以正确模拟从头蛋白质结构预测的情况,而令人惊讶的是,这一点并非总是能做到。我们证明,在片段库生成步骤中,呈现不同主要预测二级结构的片段应区别对待,并且应同时使用穷举搜索策略和随机搜索策略。利用这些信息开发了一种新方法Flib。在一个包含41个结构多样的蛋白质的验证集上,Flib库的精度和覆盖率均高于两种最先进的方法NNMake和HHFrag。在结构预测关键评估(CASP9和CASP10)的前两个实验中使用的275个蛋白质结构域的集合上,Flib也实现了更好的精度和覆盖率。我们在结构预测背景下将Flib库与NNMake库进行了比较。在生成正确答案的13个案例中,Flib模型在10个案例中比NNMake模型更准确。“Flib可从以下网址下载:http://www.stats.ox.ac.uk/research/proteins/resources”

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f1/4406757/77d0c1700b0d/pone.0123998.g001.jpg

相似文献

9
Improving fragment quality for de novo structure prediction.提高用于从头结构预测的片段质量。
Proteins. 2014 Sep;82(9):2240-52. doi: 10.1002/prot.24587. Epub 2014 May 2.

引用本文的文献

8
The H3 loop of antibodies shows unique structural characteristics.抗体的H3环呈现出独特的结构特征。
Proteins. 2017 Jul;85(7):1311-1318. doi: 10.1002/prot.25291. Epub 2017 Apr 6.

本文引用的文献

3
How long is a piece of loop?环的长度是多少?
PeerJ. 2013 Feb 12;1:e1. doi: 10.7717/peerj.1. Print 2013.
4
The Pfam protein families database.Pfam 蛋白质家族数据库。
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29.
9
HHfrag: HMM-based fragment detection using HHpred.HHfrag:基于 HHpred 的 HMM 片段检测。
Bioinformatics. 2011 Nov 15;27(22):3110-6. doi: 10.1093/bioinformatics/btr541. Epub 2011 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验