Tevis Sarah E, Weber Sharon M, Kent K Craig, Kennedy Gregory D
Department of Surgery, University of Wisconsin, Madison.
JAMA Surg. 2015 Jun;150(6):505-10. doi: 10.1001/jamasurg.2014.4043.
The Centers for Medicare and Medicaid Services have implemented penalties for hospitals with above-average readmission rates under the Hospital Readmissions Reductions Program. These changes will likely be extended to affect postoperative readmissions in the future.
To identify variables that place patients at risk for readmission, develop a predictive nomogram, and validate this nomogram.
DESIGN, SETTING, AND PARTICIPANTS: Retrospective review and prospective validation of a predictive nomogram. A predictive nomogram was developed with the linear predictor method using the American College of Surgeons National Surgical Quality Improvement Program database paired with institutional billing data for patients who underwent nonemergent inpatient general surgery procedures. The nomogram was developed from August 1, 2006, through December 31, 2011, in 2799 patients and prospectively validated from November 1, 2013, through December 19, 2013, in 255 patients at a single academic institution. Area under the curve and positive and negative predictive values were calculated.
The outcome of interest was readmission within 30 days of discharge following an index hospitalization for a surgical procedure.
Bleeding disorder (odds ratio, 2.549; 95% CI, 1.464-4.440), long operative time (odds ratio, 1.601; 95% CI, 1.186-2.160), in-hospital complications (odds ratio, 16.273; 95% CI, 12.028-22.016), dependent functional status, and the need for a higher level of care at discharge (odds ratio, 1.937; 95% CI, 1.176-3.190) were independently associated with readmission. The nomogram accurately predicted readmission (C statistic = 0.756) in a prospective evaluation. The negative predictive value was 97.9% in the prospective validation, while the positive predictive value was 11.1%.
Development of an online calculator using this predictive model will allow us to identify patients who are at high risk for readmission at the time of discharge. Patients with increased risk may benefit from more intensive postoperative follow-up in the outpatient setting.
医疗保险和医疗补助服务中心已根据医院再入院率降低计划,对再入院率高于平均水平的医院实施处罚。未来这些变化可能会扩大到影响术后再入院情况。
确定使患者有再入院风险的变量,开发预测列线图,并验证该列线图。
设计、设置和参与者:对预测列线图进行回顾性审查和前瞻性验证。使用线性预测方法,通过美国外科医师学会国家外科质量改进计划数据库与接受非急诊住院普通外科手术患者的机构计费数据相结合,开发了一个预测列线图。该列线图于2006年8月1日至2011年12月31日在2799例患者中开发,并于2013年11月1日至2013年12月19日在一家学术机构的255例患者中进行前瞻性验证。计算曲线下面积以及阳性和阴性预测值。
感兴趣的结局是外科手术首次住院出院后30天内再入院。
出血性疾病(比值比,2.549;95%置信区间,1.464 - 4.440)、手术时间长(比值比,1.601;95%置信区间,1.186 - 2.160)、院内并发症(比值比,16.273;95%置信区间,12.028 - 22.)、依赖性功能状态以及出院时需要更高水平护理(比值比,1.937;95%置信区间,1.176 - 3.190)与再入院独立相关。在一项前瞻性评估中,该列线图准确预测了再入院情况(C统计量 = 0.756)。在前瞻性验证中,阴性预测值为97.9%,而阳性预测值为11.1%。
使用此预测模型开发在线计算器将使我们能够在出院时识别出再入院风险高的患者。风险增加的患者可能会从门诊更强化的术后随访中受益。