Suppr超能文献

心肌细胞早期和延迟后去极化发生过程中的钙-电压偶联

Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes.

作者信息

Song Zhen, Ko Christopher Y, Nivala Michael, Weiss James N, Qu Zhilin

机构信息

Cardiovascular Research Laboratory, University of California, Los Angeles, California; Department of Medicine (Cardiology), University of California, Los Angeles, California.

Cardiovascular Research Laboratory, University of California, Los Angeles, California; Department of Medicine (Cardiology), University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California.

出版信息

Biophys J. 2015 Apr 21;108(8):1908-21. doi: 10.1016/j.bpj.2015.03.011.

Abstract

Early afterdepolarizations (EADs) and delayed afterdepolarizations (DADs) are voltage oscillations known to cause cardiac arrhythmias. EADs are mainly driven by voltage oscillations in the repolarizing phase of the action potential (AP), while DADs are driven by spontaneous calcium (Ca) release during diastole. Because voltage and Ca are bidirectionally coupled, they modulate each other's behaviors, and new AP and Ca cycling dynamics can emerge from this coupling. In this study, we performed computer simulations using an AP model with detailed spatiotemporal Ca cycling incorporating stochastic openings of Ca channels and ryanodine receptors to investigate the effects of Ca-voltage coupling on EAD and DAD dynamics. Simulations were complemented by experiments in mouse ventricular myocytes. We show that: 1) alteration of the Ca transient due to increased ryanodine receptor leakiness and/or sarco/endoplasmic reticulum Ca ATPase activity can either promote or suppress EADs due to the complex effects of Ca on ionic current properties; 2) spontaneous Ca waves also exhibit complex effects on EADs, but cannot induce EADs of significant amplitude without the participation of ICa,L; 3) lengthening AP duration and the occurrence of EADs promote DADs by increasing intracellular Ca loading, and two mechanisms of DADs are identified, i.e., Ca-wave-dependent and Ca-wave-independent; and 4) Ca-voltage coupling promotes complex EAD patterns such as EAD alternans that are not observed for solely voltage-driven EADs. In conclusion, Ca-voltage coupling combined with the nonlinear dynamical behaviors of voltage and Ca cycling play a key role in generating complex EAD and DAD dynamics observed experimentally in cardiac myocytes, whose mechanisms are complex but analyzable.

摘要

早期后去极化(EADs)和延迟后去极化(DADs)是已知可导致心律失常的电压振荡。EADs主要由动作电位(AP)复极化阶段的电压振荡驱动,而DADs由舒张期自发的钙(Ca)释放驱动。由于电压和Ca双向耦合,它们相互调节彼此的行为,并且这种耦合可产生新的AP和Ca循环动力学。在本研究中,我们使用一个具有详细时空Ca循环的AP模型进行计算机模拟,该模型纳入了Ca通道和兰尼碱受体的随机开放,以研究Ca-电压耦合对EAD和DAD动力学的影响。模拟通过小鼠心室肌细胞实验得到补充。我们发现:1)由于兰尼碱受体渗漏增加和/或肌浆网/内质网Ca ATP酶活性改变导致的Ca瞬变变化,可因Ca对离子电流特性的复杂影响而促进或抑制EADs;2)自发Ca波对EADs也表现出复杂影响,但在没有L型Ca电流(ICa,L)参与的情况下不能诱导出显著幅度的EADs;3)延长AP时程和EADs的发生通过增加细胞内Ca负荷促进DADs,并且确定了DADs的两种机制,即Ca波依赖性和Ca波非依赖性;4)Ca-电压耦合促进复杂的EAD模式,如EAD交替现象,这在仅由电压驱动的EADs中未观察到。总之,Ca-电压耦合与电压和Ca循环的非线性动力学行为相结合,在产生心肌细胞实验中观察到的复杂EAD和DAD动力学中起关键作用,其机制虽复杂但可分析。

相似文献

1
Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes.
Biophys J. 2015 Apr 21;108(8):1908-21. doi: 10.1016/j.bpj.2015.03.011.
2
Dissecting the roles of calcium cycling and its coupling with voltage in the genesis of early afterdepolarizations in cardiac myocyte models.
PLoS Comput Biol. 2024 Feb 28;20(2):e1011930. doi: 10.1371/journal.pcbi.1011930. eCollection 2024 Feb.
3
Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents?
Am J Physiol Heart Circ Physiol. 2012 Apr 15;302(8):H1636-44. doi: 10.1152/ajpheart.00742.2011. Epub 2012 Feb 3.
4
Slow [Na]i Changes and Positive Feedback Between Membrane Potential and [Ca]i Underlie Intermittent Early Afterdepolarizations and Arrhythmias.
Circ Arrhythm Electrophysiol. 2015 Dec;8(6):1472-80. doi: 10.1161/CIRCEP.115.003085. Epub 2015 Sep 25.
5
EAD and DAD mechanisms analyzed by developing a new human ventricular cell model.
Prog Biophys Mol Biol. 2014 Sep;116(1):11-24. doi: 10.1016/j.pbiomolbio.2014.08.008. Epub 2014 Sep 1.
6
Nonequilibrium reactivation of Na+ current drives early afterdepolarizations in mouse ventricle.
Circ Arrhythm Electrophysiol. 2014 Dec;7(6):1205-13. doi: 10.1161/CIRCEP.113.001666. Epub 2014 Sep 18.
7
Dynamical mechanisms of phase-2 early afterdepolarizations in human ventricular myocytes: insights from bifurcation analyses of two mathematical models.
Am J Physiol Heart Circ Physiol. 2017 Jan 1;312(1):H106-H127. doi: 10.1152/ajpheart.00115.2016. Epub 2016 Nov 11.
8
T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling.
J Mol Cell Cardiol. 2015 Feb;79:32-41. doi: 10.1016/j.yjmcc.2014.10.018. Epub 2014 Nov 6.
10
The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
Circ Res. 2015 Feb 27;116(5):846-56. doi: 10.1161/CIRCRESAHA.116.305404. Epub 2014 Dec 22.

引用本文的文献

3
Role of ryanodine receptor cooperativity in Ca-wave-mediated triggered activity in cardiomyocytes.
J Physiol. 2024 Dec;602(24):6745-6787. doi: 10.1113/JP286145. Epub 2024 Nov 20.
4
Enhanced Ca-Driven Arrhythmogenic Events in Female Patients With Atrial Fibrillation: Insights From Computational Modeling.
JACC Clin Electrophysiol. 2024 Nov;10(11):2371-2391. doi: 10.1016/j.jacep.2024.07.020. Epub 2024 Sep 25.
5
c-Src Is Responsible for Mitochondria-Mediated Arrhythmic Risk in Ischemic Cardiomyopathy.
Circ Arrhythm Electrophysiol. 2024 Oct;17(10):e013054. doi: 10.1161/CIRCEP.124.013054. Epub 2024 Aug 30.
6
Antiarrhythmic effects of metformin.
Heart Rhythm O2. 2024 Apr 11;5(5):310-320. doi: 10.1016/j.hroo.2024.04.003. eCollection 2024 May.
7
Dissecting the roles of calcium cycling and its coupling with voltage in the genesis of early afterdepolarizations in cardiac myocyte models.
PLoS Comput Biol. 2024 Feb 28;20(2):e1011930. doi: 10.1371/journal.pcbi.1011930. eCollection 2024 Feb.
8
Electrical and Structural Insights into Right Ventricular Outflow Tract Arrhythmogenesis.
Int J Mol Sci. 2023 Jul 22;24(14):11795. doi: 10.3390/ijms241411795.
10
Modeling Calcium Cycling in the Heart: Progress, Pitfalls, and Challenges.
Biomolecules. 2022 Nov 14;12(11):1686. doi: 10.3390/biom12111686.

本文引用的文献

1
Nonlinear and Stochastic Dynamics in the Heart.
Phys Rep. 2014 Oct 10;543(2):61-162. doi: 10.1016/j.physrep.2014.05.002.
2
Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia.
Stem Cell Reports. 2014 Aug 12;3(2):269-81. doi: 10.1016/j.stemcr.2014.06.003. Epub 2014 Jul 4.
3
Hyperphosphorylation of RyRs underlies triggered activity in transgenic rabbit model of LQT2 syndrome.
Circ Res. 2014 Nov 7;115(11):919-28. doi: 10.1161/CIRCRESAHA.115.305146. Epub 2014 Sep 23.
5
Arrhythmogenic transient dynamics in cardiac myocytes.
Biophys J. 2014 Mar 18;106(6):1391-7. doi: 10.1016/j.bpj.2013.12.050.
6
The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias.
Nat Med. 2014 Feb;20(2):184-92. doi: 10.1038/nm.3440. Epub 2014 Jan 19.
7
A study of early afterdepolarizations in a model for human ventricular tissue.
PLoS One. 2014 Jan 10;9(1):e84595. doi: 10.1371/journal.pone.0084595. eCollection 2014.
8
A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII.
J Physiol. 2014 Mar 15;592(6):1181-97. doi: 10.1113/jphysiol.2013.266676. Epub 2014 Jan 13.
9
The emergence of subcellular pacemaker sites for calcium waves and oscillations.
J Physiol. 2013 Nov 1;591(21):5305-20. doi: 10.1113/jphysiol.2013.259960. Epub 2013 Sep 16.
10
Early afterdepolarizations in cardiac myocytes: beyond reduced repolarization reserve.
Cardiovasc Res. 2013 Jul 1;99(1):6-15. doi: 10.1093/cvr/cvt104. Epub 2013 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验