Suppr超能文献

重新探讨心肌细胞早期后除极的离子机制:主要由钙波还是钙电流引起?

Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents?

机构信息

Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07101, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2012 Apr 15;302(8):H1636-44. doi: 10.1152/ajpheart.00742.2011. Epub 2012 Feb 3.

Abstract

Early afterdepolarizations (EADs) have been implicated in severe cardiac arrhythmias and sudden cardiac deaths. However, the mechanism(s) for EAD genesis, especially regarding the relative contribution of Ca(2+) wave (CaW) vs. L-type Ca current (I(Ca,L)), still remains controversial. In the present study, we simultaneously recorded action potentials (APs) and intracellular Ca(2+) images in isolated rabbit ventricular myocytes and systematically compared the properties of EADs in the following two pharmacological models: 1) hydrogen peroxide (H(2)O(2); 200 μM); and 2) isoproterenol (100 nM) and BayK 8644 (50 nM) (Iso + BayK). We assessed the rate dependency of EADs, the temporal relationship between EADs and corresponding CaWs, the distribution of EADs over voltage, and the effects of blockers of I(Ca,L), Na/Ca exchangers, and ryanodine receptors. The most convincing evidence came from the AP-clamp experiment, in which the cell membrane clamp was switched from current clamp to voltage clamp using a normal AP waveform without EAD; CaWs disappeared in the H(2)O(2) model, but persisted in the Iso + BayK model. We postulate that, although CaWs and reactivation of I(Ca,L) may act synergistically in either case, reactivation of I(Ca,L) plays a predominant role in EAD genesis under oxidative stress (H(2)O(2) model), while spontaneous CaWs are a predominant cause for EADs under Ca(2+) overload condition (Iso + BayK model).

摘要

早期后除极(EADs)与严重的心律失常和心脏性猝死有关。然而,EAD 产生的机制,尤其是钙波(CaW)与 L 型钙电流(I(Ca,L))的相对贡献,仍然存在争议。在本研究中,我们在分离的兔心室肌细胞中同时记录动作电位(APs)和细胞内 Ca(2+)图像,并在以下两种药理学模型中系统比较 EADs 的特性:1)过氧化氢(H(2)O(2);200 μM);2)异丙肾上腺素(100 nM)和 BayK 8644(50 nM)(Iso + BayK)。我们评估了 EADs 的速率依赖性、EADs 与相应 CaW 之间的时间关系、EADs 在电压上的分布以及 I(Ca,L)、Na/Ca 交换器和 Ryanodine 受体阻滞剂的作用。最有说服力的证据来自 AP 钳位实验,其中细胞膜钳位从电流钳位切换到电压钳位,使用没有 EAD 的正常 AP 波形;在 H(2)O(2)模型中 CaW 消失,但在 Iso + BayK 模型中持续存在。我们假设,尽管 CaW 和 I(Ca,L)的再激活在这两种情况下可能协同作用,但在氧化应激下(H(2)O(2)模型),I(Ca,L)的再激活在 EAD 产生中起主要作用,而自发性 CaW 在 Ca(2+)过载条件下(Iso + BayK 模型)是 EADs 的主要原因。

相似文献

1
Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents?
Am J Physiol Heart Circ Physiol. 2012 Apr 15;302(8):H1636-44. doi: 10.1152/ajpheart.00742.2011. Epub 2012 Feb 3.
3
Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling.
Circ Res. 2009 Jan 2;104(1):79-86. doi: 10.1161/CIRCRESAHA.108.183475. Epub 2008 Nov 26.
4
Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes.
Biophys J. 2015 Apr 21;108(8):1908-21. doi: 10.1016/j.bpj.2015.03.011.
5
Nonequilibrium reactivation of Na+ current drives early afterdepolarizations in mouse ventricle.
Circ Arrhythm Electrophysiol. 2014 Dec;7(6):1205-13. doi: 10.1161/CIRCEP.113.001666. Epub 2014 Sep 18.
6
Shaping a new Ca²⁺ conductance to suppress early afterdepolarizations in cardiac myocytes.
J Physiol. 2011 Dec 15;589(Pt 24):6081-92. doi: 10.1113/jphysiol.2011.219600. Epub 2011 Oct 24.
7
Arrhythmogenic consequences of intracellular calcium waves.
Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H997-H1002. doi: 10.1152/ajpheart.00390.2009. Epub 2009 Jun 26.
9
Dynamic clamping human and rabbit atrial calcium current: narrowing I window abolishes early afterdepolarizations.
J Physiol. 2019 Jul;597(14):3619-3638. doi: 10.1113/JP277827. Epub 2019 Jun 12.
10
Role of the transient outward potassium current in the genesis of early afterdepolarizations in cardiac cells.
Cardiovasc Res. 2012 Aug 1;95(3):308-16. doi: 10.1093/cvr/cvs183. Epub 2012 Jun 1.

引用本文的文献

1
Role of ryanodine receptor cooperativity in Ca-wave-mediated triggered activity in cardiomyocytes.
J Physiol. 2024 Dec;602(24):6745-6787. doi: 10.1113/JP286145. Epub 2024 Nov 20.
2
RNA splicing factor RBFOX2 is a key factor in the progression of cancer and cardiomyopathy.
Clin Transl Med. 2024 Sep;14(9):e1788. doi: 10.1002/ctm2.1788.
3
Unexpected impairment of underpins reentrant arrhythmias in a knock-in swine model of Timothy syndrome.
Nat Cardiovasc Res. 2023;2(12):1291-1309. doi: 10.1038/s44161-023-00393-w. Epub 2023 Dec 11.
4
Dissecting the roles of calcium cycling and its coupling with voltage in the genesis of early afterdepolarizations in cardiac myocyte models.
PLoS Comput Biol. 2024 Feb 28;20(2):e1011930. doi: 10.1371/journal.pcbi.1011930. eCollection 2024 Feb.
5
Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca.
Philos Trans R Soc Lond B Biol Sci. 2023 Jun 19;378(1879):20220170. doi: 10.1098/rstb.2022.0170. Epub 2023 May 1.
7
Modeling Calcium Cycling in the Heart: Progress, Pitfalls, and Challenges.
Biomolecules. 2022 Nov 14;12(11):1686. doi: 10.3390/biom12111686.
8
Bifurcations and Proarrhythmic Behaviors in Cardiac Electrical Excitations.
Biomolecules. 2022 Mar 16;12(3):459. doi: 10.3390/biom12030459.
9
Targeting late ICaL to close the window to ventricular arrhythmias.
J Gen Physiol. 2021 Dec 6;153(12). doi: 10.1085/jgp.202113009. Epub 2021 Oct 26.
10
Suppression of ventricular arrhythmias by targeting late L-type Ca2+ current.
J Gen Physiol. 2021 Dec 6;153(12). doi: 10.1085/jgp.202012584. Epub 2021 Oct 26.

本文引用的文献

1
Early afterdepolarizations and cardiac arrhythmias.
Heart Rhythm. 2010 Dec;7(12):1891-9. doi: 10.1016/j.hrthm.2010.09.017. Epub 2010 Sep 22.
2
Sudden cardio arrest: oxidative stress irritates the heart.
Nat Med. 2010 Jun;16(6):648-9. doi: 10.1038/nm0610-648.
3
L-type Ca(2+) channel facilitation mediated by H(2)O(2)-induced activation of CaMKII in rat ventricular myocytes.
J Mol Cell Cardiol. 2010 Apr;48(4):773-80. doi: 10.1016/j.yjmcc.2009.10.020. Epub 2009 Oct 31.
5
Increased susceptibility of aged hearts to ventricular fibrillation during oxidative stress.
Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1594-605. doi: 10.1152/ajpheart.00579.2009. Epub 2009 Sep 18.
6
Arrhythmogenic consequences of intracellular calcium waves.
Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H997-H1002. doi: 10.1152/ajpheart.00390.2009. Epub 2009 Jun 26.
8
Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):2983-8. doi: 10.1073/pnas.0809148106. Epub 2009 Feb 13.
9
What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis?
J Mol Cell Cardiol. 2009 Apr;46(4):474-81. doi: 10.1016/j.yjmcc.2008.12.005. Epub 2008 Dec 25.
10
Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling.
Circ Res. 2009 Jan 2;104(1):79-86. doi: 10.1161/CIRCRESAHA.108.183475. Epub 2008 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验