Suppr超能文献

心肌细胞与基质细胞的相互作用影响致心律失常性心肌病的发病机制:多层次分析揭示DLK1-NOTCH通路在纤维脂肪重塑中的作用。

Cardiomyocyte and stromal cell cross-talk influences the pathogenesis of arrhythmogenic cardiomyopathy: a multi-level analysis uncovers DLK1-NOTCH pathway role in fibro-adipose remodelling.

作者信息

Maione Angela Serena, Iengo Lara, Sala Luca, Massaiu Ilaria, Chiesa Mattia, Lippi Melania, Ghilardi Stefania, Florindi Chiara, Lodola Francesco, Zaza Antonio, Tondo Claudio, Schiavone Marco, Banfi Cristina, Pompilio Giulio, Poggio Paolo, Sommariva Elena

机构信息

Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.

Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, 20095, Milan, Italy.

出版信息

Cell Death Discov. 2024 Nov 28;10(1):484. doi: 10.1038/s41420-024-02232-8.

Abstract

Arrhythmogenic Cardiomyopathy (ACM) is a life-threatening, genetically determined disease primarily caused by mutations in desmosomal genes, such as PKP2. Currently, there is no etiological therapy for ACM due to its complex and not fully elucidated pathogenesis. Various cardiac cell types affected by the genetic mutation, such as cardiomyocytes (CM) and cardiac mesenchymal stromal cells (cMSC), individually contribute to the ACM phenotype, driving functional abnormalities and fibro-fatty substitution, respectively. However, the relative importance of the CM and cMSC alterations, as well as their reciprocal influence in disease progression remain poorly understood. We hypothesised that ACM-dependent phenotypes are driven not only by alterations in individual cell types but also by the reciprocal interactions between CM and cMSC, which may further impact disease pathogenesis. We utilized a patient-specific, multicellular cardiac system composed of either control or PKP2-mutated CM and cMSC to assess the mutation's role in fibro-fatty phenotype by immunofluorescence, and contractile behaviour of co-cultures using cell motion detection software. Additionally, we investigated reciprocal interactions both in silico and via multi-targeted proteomics. We demonstrated that ACM CM can promote fibro-adipose differentiation of cMSC. Conversely, ACM cMSC contribute to increasing the rate of abnormal contractile events with likely arrhythmic significance. Furthermore, we showed that an ACM-causative mutation alters the CM-cMSC interaction pattern. We identified the CM-sourced DLK1 as a novel regulator of fibro-adipose remodelling in ACM. Our study challenges the paradigm of exclusive cell-specific mechanisms in ACM. A deeper understanding of the cell-cell influence is crucial for identifying novel therapeutic targets for ACM, and this concept is exploitable for other cardiomyopathies.

摘要

致心律失常性心肌病(ACM)是一种危及生命的、由基因决定的疾病,主要由桥粒基因(如PKP2)突变引起。目前,由于其发病机制复杂且尚未完全阐明,ACM尚无病因治疗方法。受基因突变影响的各种心脏细胞类型,如心肌细胞(CM)和心脏间充质基质细胞(cMSC),分别导致ACM表型,分别驱动功能异常和纤维脂肪替代。然而,CM和cMSC改变的相对重要性,以及它们在疾病进展中的相互影响仍知之甚少。我们假设,ACM相关表型不仅由单个细胞类型的改变驱动,还由CM和cMSC之间的相互作用驱动,这可能进一步影响疾病发病机制。我们利用由对照或PKP2突变的CM和cMSC组成的患者特异性多细胞心脏系统,通过免疫荧光评估突变在纤维脂肪表型中的作用,并使用细胞运动检测软件评估共培养物的收缩行为。此外,我们通过计算机模拟和多靶点蛋白质组学研究了相互作用。我们证明,ACM CM可以促进cMSC的纤维脂肪分化。相反,ACM cMSC有助于增加具有可能心律失常意义的异常收缩事件的发生率。此外,我们表明,ACM致病突变改变了CM-cMSC相互作用模式。我们确定CM来源的DLK1是ACM中纤维脂肪重塑的新型调节因子。我们的研究挑战了ACM中排他性细胞特异性机制的范式。深入了解细胞间影响对于确定ACM的新型治疗靶点至关重要,这一概念也可用于其他心肌病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8a7/11604953/61d70aaa4aaf/41420_2024_2232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验