Suppr超能文献

间充质干细胞在弹性体、电纺聚氨酯网片上的静态和循环机械加载。

Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes.

作者信息

Cardwell Robyn D, Kluge Jonathan A, Thayer Patrick S, Guelcher Scott A, Dahlgren Linda A, Kaplan David L, Goldstein Aaron S

出版信息

J Biomech Eng. 2015 Jul;137(7):0710101-8. doi: 10.1115/1.4030404. Epub 2015 Jun 3.

Abstract

Biomaterial substrates composed of semi-aligned electrospun fibers are attractive supports for the regeneration of connective tissues because the fibers are durable under cyclic tensile loads and can guide cell adhesion, orientation, and gene expression. Previous studies on supported electrospun substrates have shown that both fiber diameter and mechanical deformation can independently influence cell morphology and gene expression. However, no studies have examined the effect of mechanical deformation and fiber diameter on unsupported meshes. Semi-aligned large (1.75 μm) and small (0.60 μm) diameter fiber meshes were prepared from degradable elastomeric poly(esterurethane urea) (PEUUR) meshes and characterized by tensile testing and scanning electron microscopy (SEM). Next, unsupported meshes were aligned between custom grips (with the stretch axis oriented parallel to axis of fiber alignment), seeded with C3H10T1/2 cells, and subjected to a static load (50 mN, adjusted daily), a cyclic load (4% strain at 0.25 Hz for 30 min, followed by a static tensile loading of 50 mN, daily), or no load. After 3 days of mechanical stimulation, confocal imaging was used to characterize cell shape, while measurements of deoxyribonucleic acid (DNA) content and messenger ribonucleic acid (mRNA) expression were used to characterize cell retention on unsupported meshes and expression of the connective tissue phenotype. Mechanical testing confirmed that these materials deform elastically to at least 10%. Cells adhered to unsupported meshes under all conditions and aligned with the direction of fiber orientation. Application of static and cyclic loads increased cell alignment. Cell density and mRNA expression of connective tissue proteins were not statistically different between experimental groups. However, on large diameter fiber meshes, static loading slightly elevated tenomodulin expression relative to the no load group, and tenascin-C and tenomodulin expression relative to the cyclic load group. These results demonstrate the feasibility of maintaining cell adhesion and alignment on semi-aligned fibrous elastomeric substrates under different mechanical conditions. The study confirms that cell morphology is sensitive to the mechanical environment and suggests that expression of select connective tissue genes may be enhanced on large diameter fiber meshes under static tensile loads.

摘要

由半排列的电纺纤维组成的生物材料基质是结缔组织再生的有吸引力的支撑物,因为这些纤维在循环拉伸载荷下具有耐久性,并且可以引导细胞粘附、定向和基因表达。先前对支撑电纺基质的研究表明,纤维直径和机械变形都可以独立影响细胞形态和基因表达。然而,尚无研究考察机械变形和纤维直径对无支撑网片的影响。用可降解弹性体聚(酯脲脲)(PEUUR)制备了半排列的大直径(1.75μm)和小直径(0.60μm)纤维网片,并通过拉伸试验和扫描电子显微镜(SEM)进行了表征。接下来,将无支撑网片在定制夹具之间对齐(拉伸轴与纤维排列轴平行),接种C3H10T1/2细胞,并施加静态载荷(50mN,每天调整)、循环载荷(在0.25Hz下4%应变30分钟,然后每天进行50mN的静态拉伸加载)或不加载。经过3天的机械刺激后,共聚焦成像用于表征细胞形状,而脱氧核糖核酸(DNA)含量和信使核糖核酸(mRNA)表达的测量用于表征细胞在无支撑网片上的留存情况以及结缔组织表型的表达。机械测试证实这些材料至少能弹性变形10%。在所有条件下细胞都能粘附在无支撑网片上,并与纤维定向方向对齐。施加静态和循环载荷可增加细胞对齐。各实验组之间细胞密度和结缔组织蛋白的mRNA表达无统计学差异。然而,在大直径纤维网片上,相对于无载荷组,静态加载使腱调蛋白表达略有升高,相对于循环载荷组,腱生蛋白-C和腱调蛋白表达有所升高。这些结果证明了在不同机械条件下,在半排列的纤维弹性体基质上维持细胞粘附和对齐的可行性。该研究证实细胞形态对机械环境敏感,并表明在静态拉伸载荷下,大直径纤维网片上某些结缔组织基因的表达可能会增强。

相似文献

1
Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes.
J Biomech Eng. 2015 Jul;137(7):0710101-8. doi: 10.1115/1.4030404. Epub 2015 Jun 3.
2
Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells.
Tissue Eng Part A. 2009 Sep;15(9):2435-45. doi: 10.1089/ten.tea.2008.0295.
4
Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering.
Biomacromolecules. 2014 Jan 13;15(1):75-83. doi: 10.1021/bm4013056. Epub 2013 Dec 5.
5
A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity.
Acta Biomater. 2010 Nov;6(11):4218-28. doi: 10.1016/j.actbio.2010.06.018. Epub 2010 Jun 20.
6
Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold.
Biomaterials. 2011 Jul;32(21):4816-29. doi: 10.1016/j.biomaterials.2011.03.034. Epub 2011 Apr 3.
8
Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes.
Biomaterials. 2006 Nov;27(33):5681-8. doi: 10.1016/j.biomaterials.2006.07.005. Epub 2006 Aug 17.
9
Adaptive responses of murine osteoblasts subjected to coupled mechanical stimuli.
J Mech Behav Biomed Mater. 2018 Jan;77:250-257. doi: 10.1016/j.jmbbm.2017.09.018. Epub 2017 Sep 14.
10
Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro.
Tissue Eng Part A. 2014 Jan;20(1-2):398-409. doi: 10.1089/ten.TEA.2012.0426. Epub 2013 Oct 12.

引用本文的文献

1
Mechanical strain induces ex vivo expansion of periosteum.
PLoS One. 2022 Dec 30;17(12):e0279519. doi: 10.1371/journal.pone.0279519. eCollection 2022.
3
Advanced Robotics to Address the Translational Gap in Tendon Engineering.
Cyborg Bionic Syst. 2022 Sep 15;2022:9842169. doi: 10.34133/2022/9842169. eCollection 2022.
5
Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives.
Int J Mol Sci. 2021 Jan 18;22(2):913. doi: 10.3390/ijms22020913.
6
In Vivo and In Vitro Mechanical Loading of Mouse Achilles Tendons and Tenocytes-A Pilot Study.
Int J Mol Sci. 2020 Feb 15;21(4):1313. doi: 10.3390/ijms21041313.
7
Cyclic Stretch Effects on Adipose-Derived Stem Cell Stiffness, Morphology and Smooth Muscle Cell Gene Expression.
Tissue Eng Regen Med. 2017 May 19;14(3):279-286. doi: 10.1007/s13770-017-0033-6. eCollection 2017 Jun.
8
Mechanical stretch and chronotherapeutic techniques for progenitor cell transplantation and biomaterials.
Biomedicine (Taipei). 2018 Sep;8(3):14. doi: 10.1051/bmdcn/2018080314. Epub 2018 Aug 24.
9
Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges.
Materials (Basel). 2018 Jun 29;11(7):1116. doi: 10.3390/ma11071116.

本文引用的文献

2
Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells.
Tissue Eng Part A. 2013 Jun;19(11-12):1360-72. doi: 10.1089/ten.TEA.2012.0279. Epub 2013 Mar 29.
3
Scaffold fiber diameter regulates human tendon fibroblast growth and differentiation.
Tissue Eng Part A. 2013 Feb;19(3-4):519-28. doi: 10.1089/ten.tea.2012.0072. Epub 2012 Nov 14.
4
Electrospun fibre diameter, not alignment, affects mesenchymal stem cell differentiation into the tendon/ligament lineage.
J Tissue Eng Regen Med. 2014 Dec;8(12):937-45. doi: 10.1002/term.1589. Epub 2012 Oct 5.
5
Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment.
Acta Biomater. 2012 Nov;8(11):3982-90. doi: 10.1016/j.actbio.2012.06.041. Epub 2012 Jul 10.
7
Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments.
Tissue Eng Part A. 2012 Feb;18(3-4):277-84. doi: 10.1089/ten.TEA.2011.0336. Epub 2011 Dec 22.
8
Braided nanofibrous scaffold for tendon and ligament tissue engineering.
Tissue Eng Part A. 2013 Jun;19(11-12):1265-74. doi: 10.1089/ten.tea.2010.0538. Epub 2011 Sep 6.
9
Bioreactor system using noninvasive imaging and mechanical stretch for biomaterial screening.
Ann Biomed Eng. 2011 May;39(5):1390-402. doi: 10.1007/s10439-010-0243-8. Epub 2011 Feb 5.
10
Evaluation of a hydrogel-fiber composite for ACL tissue engineering.
J Biomech. 2011 Feb 24;44(4):694-9. doi: 10.1016/j.jbiomech.2010.10.043. Epub 2010 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验