Suppr超能文献

动物追踪数据的比较分析揭示了鱼类恒温的生态意义。

Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes.

作者信息

Watanabe Yuuki Y, Goldman Kenneth J, Caselle Jennifer E, Chapman Demian D, Papastamatiou Yannis P

机构信息

National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan; Department of Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo 190-8518, Japan;

Alaska Department of Fish and Game, Homer, AK 99603;

出版信息

Proc Natl Acad Sci U S A. 2015 May 12;112(19):6104-9. doi: 10.1073/pnas.1500316112. Epub 2015 Apr 20.

Abstract

Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2-3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources.

摘要

尽管鲨鱼和金枪鱼在进化上长期分离,但它们中的几种都具备将慢肌有氧红色肌肉(RM)维持在比周围水温更高温度的能力。RM 产热的近因已得到充分理解,但其根本原因尚不清楚。通常提出的两个优势是热生态位扩展和巡航速度提高。热生态位假说总体上得到支持,因为具有 RM 产热能力的鱼类通常对更广泛的温度范围表现出更强的耐受性。相比之下,具有 RM 产热能力的鱼类是否游得更快,以及这样做是否能获得任何生态益处,仍不明确。在此,我们汇总了现代动物追踪工具记录的各种自由游动海洋脊椎动物的数据。利用系统发育信息异速生长分析,我们发现具有 RM 产热能力的鱼类的巡航速度和最大年度洄游范围都是不具备该能力鱼类的 2 至 3 倍,且与非鱼类恒温动物(即企鹅和海洋哺乳动物)相当。具有 RM 产热能力的鱼类的估计运输成本是不具备该能力鱼类的两倍。我们认为,鱼类 RM 产热的高能量成本被巡航速度提高带来的益处所抵消,这不仅提高了遭遇猎物的几率,还能实现更大规模的年度洄游,并有可能更多地获取季节性可得资源。

相似文献

1
Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6104-9. doi: 10.1073/pnas.1500316112. Epub 2015 Apr 20.
2
Evolution and consequences of endothermy in fishes.
Physiol Biochem Zool. 2004 Nov-Dec;77(6):998-1018. doi: 10.1086/423743.
3
Thermal effects on red muscle contractile performance in deep-diving, large-bodied fishes.
Fish Physiol Biochem. 2020 Oct;46(5):1833-1845. doi: 10.1007/s10695-020-00831-7. Epub 2020 Jun 25.
4
Seasonal reproductive endothermy in tegu lizards.
Sci Adv. 2016 Jan 22;2(1):e1500951. doi: 10.1126/sciadv.1500951. eCollection 2016 Jan.
5
Review: Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas.
Comp Biochem Physiol A Mol Integr Physiol. 2001 Jun;129(2-3):695-726. doi: 10.1016/s1095-6433(01)00333-6.
9
The evolution of endothermy in terrestrial vertebrates: Who? When? Why?
Physiol Biochem Zool. 2004 Nov-Dec;77(6):1019-42. doi: 10.1086/425185.

引用本文的文献

1
Ecological interactions and genomic innovation fueled the evolution of ray-finned fish endothermy.
Sci Adv. 2025 Jun 27;11(26):eads8488. doi: 10.1126/sciadv.ads8488. Epub 2025 Jun 25.
2
The living dinosaur: accomplishments and challenges of reconstructing dinosaur physiology.
Biol Lett. 2025 May;21(5):20250126. doi: 10.1098/rsbl.2025.0126. Epub 2025 May 29.
6
Ecological lifestyle and gill slit height across sharks.
R Soc Open Sci. 2024 May 29;11(5):231867. doi: 10.1098/rsos.231867. eCollection 2024 May.
7
Centralized red muscle in and the prevalence of regional endothermy in sharks.
Biol Lett. 2023 Nov;19(11):20230331. doi: 10.1098/rsbl.2023.0331. Epub 2023 Nov 8.
9
Tail shape and the swimming speed of sharks.
R Soc Open Sci. 2023 Oct 11;10(10):231127. doi: 10.1098/rsos.231127. eCollection 2023 Oct.

本文引用的文献

2
The tree of life and a new classification of bony fishes.
PLoS Curr. 2013 Apr 18;5:ecurrents.tol.53ba26640df0ccaee75bb165c8c26288. doi: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.
5
Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes).
Mol Phylogenet Evol. 2011 Feb;58(2):207-17. doi: 10.1016/j.ympev.2010.11.018. Epub 2010 Nov 30.
6
Scaling of swim speed in breath-hold divers.
J Anim Ecol. 2011 Jan;80(1):57-68. doi: 10.1111/j.1365-2656.2010.01760.x. Epub 2010 Oct 14.
7
Rapidly evolving fish genomes and teleost diversity.
Curr Opin Genet Dev. 2008 Dec;18(6):544-50. doi: 10.1016/j.gde.2008.11.001. Epub 2008 Dec 16.
9
Influence of swimming speed on metabolic rates of juvenile pacific bluefin tuna and yellowfin tuna.
Physiol Biochem Zool. 2007 Mar-Apr;80(2):167-77. doi: 10.1086/510637. Epub 2007 Jan 5.
10
The scaling and temperature dependence of vertebrate metabolism.
Biol Lett. 2006 Mar 22;2(1):125-7. doi: 10.1098/rsbl.2005.0378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验