Lazear Helen M, Daniels Brian P, Pinto Amelia K, Huang Albert C, Vick Sarah C, Doyle Sean E, Gale Michael, Klein Robyn S, Diamond Michael S
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Sci Transl Med. 2015 Apr 22;7(284):284ra59. doi: 10.1126/scitranslmed.aaa4304.
Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1(-/-) mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1(-/-) mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1(-/-) mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis.
尽管干扰素λ(也称为III型干扰素或白细胞介素-28(IL-28)/IL-29)可限制多种病毒的感染,但其抑制机制仍不明确。我们使用重组干扰素λ和缺乏干扰素λ受体(IFNLR1)的小鼠来评估干扰素λ对西尼罗河病毒(一种脑炎黄病毒)感染的影响。在小鼠角质形成细胞和树突状细胞中进行的细胞培养研究表明,外源性干扰素λ没有直接的抗病毒作用,尽管诱导了干扰素刺激基因的表达。我们观察到,在引流淋巴结、脾脏或血液中,野生型小鼠和Ifnlr1(-/-)小鼠的西尼罗河病毒载量没有差异。我们在Ifnlr1(-/-)小鼠的脑和脊髓中检测到西尼罗河病毒感染增加,但这与小鼠神经元中的直接抗病毒作用无关。相反,我们观察到Ifnlr1(-/-)小鼠的血脑屏障通透性增加。用聚乙二醇化干扰素λ2治疗小鼠可降低血脑屏障通透性,减少脑中的西尼罗河病毒感染,而不影响病毒血症,并提高对致死性病毒攻击的存活率。血脑屏障的体外模型表明,小鼠脑微血管内皮细胞中的干扰素λ信号增加了跨内皮电阻,减少了病毒穿过屏障的移动,并以一种不依赖蛋白质合成和信号转导及转录激活因子1(STAT1)的方式调节紧密连接蛋白的定位。我们的数据确立了干扰素λ的间接抗病毒功能,即通过IFNLR1的非经典信号传导加强血脑屏障并限制病毒神经侵袭和发病机制。