Suppr超能文献

具有高维协变量的竞争风险数据分析:在膀胱癌中的应用

Competing risks data analysis with high-dimensional covariates: an application in bladder cancer.

作者信息

Tapak Leili, Saidijam Massoud, Sadeghifar Majid, Poorolajal Jalal, Mahjub Hossein

机构信息

Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran.

Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan 651783-8695, Iran.

出版信息

Genomics Proteomics Bioinformatics. 2015 Jun;13(3):169-76. doi: 10.1016/j.gpb.2015.04.001. Epub 2015 Apr 20.

Abstract

Analysis of microarray data is associated with the methodological problems of high dimension and small sample size. Various methods have been used for variable selection in high-dimension and small sample size cases with a single survival endpoint. However, little effort has been directed toward addressing competing risks where there is more than one failure risks. This study compared three typical variable selection techniques including Lasso, elastic net, and likelihood-based boosting for high-dimensional time-to-event data with competing risks. The performance of these methods was evaluated via a simulation study by analyzing a real dataset related to bladder cancer patients using time-dependent receiver operator characteristic (ROC) curve and bootstrap .632+ prediction error curves. The elastic net penalization method was shown to outperform Lasso and boosting. Based on the elastic net, 33 genes out of 1381 genes related to bladder cancer were selected. By fitting to the Fine and Gray model, eight genes were highly significant (P<0.001). Among them, expression of RTN4, SON, IGF1R, SNRPE, PTGR1, PLEK, and ETFDH was associated with a decrease in survival time, whereas SMARCAD1 expression was associated with an increase in survival time. This study indicates that the elastic net has a higher capacity than the Lasso and boosting for the prediction of survival time in bladder cancer patients. Moreover, genes selected by all methods improved the predictive power of the model based on only clinical variables, indicating the value of information contained in the microarray features.

摘要

微阵列数据分析与高维和小样本量的方法学问题相关。在具有单一生存终点的高维和小样本量情况下,已使用各种方法进行变量选择。然而,针对存在多种失败风险的竞争风险问题,所做的努力很少。本研究比较了三种典型的变量选择技术,包括套索(Lasso)、弹性网络和基于似然的提升法,用于分析具有竞争风险的高维事件发生时间数据。通过模拟研究,使用时间依赖的受试者工作特征(ROC)曲线和自助法.632 +预测误差曲线,分析与膀胱癌患者相关的真实数据集,对这些方法的性能进行了评估。结果表明,弹性网络惩罚方法优于套索法和提升法。基于弹性网络,从与膀胱癌相关的1381个基因中选择了33个基因。通过拟合Fine和Gray模型,发现8个基因具有高度显著性(P<0.001)。其中,RTN4、SON、IGF1R、SNRPE、PTGR1、PLEK和ETFDH的表达与生存时间缩短相关,而SMARCAD1的表达与生存时间延长相关。本研究表明,在预测膀胱癌患者的生存时间方面,弹性网络比套索法和提升法具有更高的能力。此外,所有方法选择的基因都提高了仅基于临床变量的模型的预测能力,表明微阵列特征中包含的信息具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89c/4563215/14358be119f2/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验